
Light Source Effects on Hydroponically Grown Compact 'Winter Density' Bibb Lettuce

Kent D. Kobayashi and Teresita D. Amore

Tropical Plant & Soil Sciences Dept.
University of Hawaii at Manoa, Honolulu, HI 96822 USA

Introduction

There is growing concern about food safety, environmental impact, and efficient energy usage in horticultural production systems. Producing lettuce under artificial lighting could be a solution addressing these concerns.

Objective: Determine the effects of different light sources on the growth of compact 'Winter Density' Bibb lettuce in a noncirculating hydroponic system.

Methods

- Lettuce seeds were started in Oasis cubes.
 Seedlings were transferred to 5.1-cm net pots in 1.9-L containers containing a hydroponic nutrient solution.
- Solution was Hydro-Gardens' Chem-Gro Hobby Formula 10-8-22 hydroponic fertilizer and magnesium sulfate (9.8% Mg).
- Plants were grown under high output (HO) T-5 fluorescent lights. Light level was 118 µmol/m²/s, photoperiod 16 h.
- After 10 days, half of the plants were moved under red+blue+white light-emitting diode lights (LEDs) for 10 more days. Light level was 121 µmol/m²/s, photoperiod 16 h.

Methods

High output fluorescent lighting setup

Results

Table 1. Lettuce height and dry weight (DW).

Treatment	Plant height (cm)	Shoot dry weight (DW) (g)	Root DW (g)	Total plant DW (g)
Fluorescent then red+blue+ white LEDs	8.5 b	1.52	0.29 a	1.81
Fluorescent	12.1 a	1.28	0.15 b	1.43

Table 2. Lettuce DW partitioning and SPAD reading.

Treatment	Shoot DW partitioning (%)	Root DW partitioning (%)	Shoot- root ratio	SPAD reading
Fluorescent then red+blue+ white LEDs	84.1 b	15.9 a	5.3 b	39.9
Fluorescent	89.9 a	10.1 b	9.3 a	38.3

Results

Table 3. Lettuce hydroponic nutrient solution.

Treatment	Shoot DW /nutrient solution used (mg/ml)	Nutrient solution used (ml)	EC (mS/cm)	pН
Fluorescent then red+blue+ white LEDs	5.5 a	284 b	2.1 b	7.1
Fluorescent	2.9 b	442 a	2.8 a	7.1

Light-emitting diode lighting setup

Conclusion

Moving lettuce plants from initial fluorescent lighting to later LED lighting may enhance certain attributes of hydroponically grown compact lettuce.

Acknowledgement

College of Tropical Agriculture and Human Resources, University of Hawaii—CTAHR Supplemental Research Funding