UNIVERSITY of FLORIDA

Carlene A. Chase¹, Guilherme Braz², and Tamika Garrick¹

Off-season weed and sting nematode management for organic strawberry

¹University of Florida, Gainesville and ²Universidade Estadual de Maringá, Paraná, Brazil

237

Introduction

Increasing the cover crop options for annual hill production of organic strawberry (*Fragaria ×ananassa*) can increase cropping system diversity while providing agroecosystem services. In summer 2013, sunn hemp (*Crotalaria juncea*) and hairy indigo (*Indigofera hirsuta*) were the best performing of four leguminous cover crops. The cover crops had been selected for evaluation due to their potential for off-season suppression of weeds and plant-pathogenic nematodes and as a source of green manure. Stakeholder evaluation of the research yielded the following

Materials and Methods

Table 1. Species and seeding rates of cover crops used in monoculture and mixture prior to organic strawberry. Sunn hemp and hairy indigo were evaluated at 4 locations, and sesame and the 4-way mixture at only 1 of the 4 locations.

Cover Crop	Rate
Sunn hemp	40 lb/ac
Hairy indigo	20 lb/ac
4-way mixture	Sunn hemp, hairy indigo, short-flower rattlebox, American jointvetch (12 lb, 12 lb, 6 lb, and 6 lb/ac each)
Sesame	7 lb/ac
Weedv	No cover crop

Conclusions

In 3 of 4 locations sunn hemp dry biomass exceeded 7000 kg/ha – only sesame had comparable biomass.

Hairy indigo and sesame were as effective as sunn hemp at suppressing weed biomass.

The 4-way mixture effectively suppressed weeds but 80% of the biomass consisted of sunn hemp.

- recommendations:
- More research with sunn hemp and hairy indigo.
- Evaluate cover crops that produce a marketable product and cover crop mixtures.
- As a result, the **objectives** of the 2014 studies were to:
- 1. Further evaluate biomass production and weed suppression of sunn hemp and hairy indigo.
- 2. Compare the performance of sunn hemp and hairy indigo to sesame (*Sesamum indicum*) a potential "cash" cover crop and a 4-way cover crop mixture.
- 3. Assess whether *Crotalaria* accessions and species of differing origins vary in susceptibility to *Belonolaimus longicaudatus* (sting nematode), a key pest of strawberry in Florida.

Greenhouse Nematode Assay:

- Single Crotalaria plants were grown in 11.5-L pots in soil pasteurized with dry heat at 61 °C for one week.
- Inoculation with a 10-mL suspension
 containing 200 sting nematodes in 4 holes
 (1 cm x 2.5 cm) in the soil.
- Host status was determined at 60 days after inoculation by extracting nematodes from 100 cm³ of soil from each pot.

Crotalaria species vary in their susceptibility to sting nematode but 'Tropic Sun' sunn hemp is a nonhost.

Results

Table 3. Weed biomass at Barefoot Farm (Lake Butler, FL) in

response to sunn hemp, hairy indigo, sesame cover crops, and

Table 5. Comparison of sting nematode populations with different accessions of *Crotalaria ochroleuca* and *C. spectabilis,* a

Fig. 1. Cover crop biomass at 9 weeks after planting at the Plant Science Research and Education Unit (PSREU) in Citra, FL and at 3 farms in north-central Florida, 2014.

Table 2. Weed biomass in Citra and at two organic farms (Gainesville and Hawthorne, FL) in response to sunn hemp

the 4-way mixture at 9 weeks after planting. Sunn hemp was the predominate species in the mixture representing 80% of the shoot biomass.

Cover Crop	Broadleaf	Grasses	Sedges	Total
	(kg/ha)			
Weedy	1387 a	1322 a	40 a	2749 a
Sunn hemp	39 b	22 b	11 b	73 b
Hairy indigo	268 b	330 b	2 b	600 b
4-way mixture	86 b	500 ab	2 b	588 b
Sesame	78 b	243 b	13 b	334 b

Table 4. Differential sting nematode infestation of sunn hemp (*Crotalaria juncea*) accessions 60 days after inoculation with 200 sting nematodes per pot. Accession PI 468956, the cultivar Tropic Sun, was a nonhost to the sting nematode.

commercial variety of *C. breviflora* and corn (a susceptible control) at 60 days after inoculation with 200 sting nematodes per pot.

Accession/Species	Origin	Nematodes/ 100 cm ³ soil
PI 274767 / C. ochroleuca	South Africa	0.0 c
PI 543869 / C. ochroleuca	Tanzania	0.0 c
PI 407529 / C. ochroleuca	Zaire	4.2 bc
PI 238268 / C. spectabilis	Australia	4.6 bc
PI 240413 / C. spectabilis	Australia	4.4 bc
PI 316944 / C. spectabilis	Brazil	9.2 bc
PI 316945 / C. spectabilis	Brazil	28.6 ab
PI 337081 / C. spectabilis	Brazil	15.0 ab
PI 217908 / C. spectabilis	India	0.0 c
PI 249683 / C. spectabilis	India	4.8 bc
PI 346295 / C. spectabilis	India	5.0 bc
PI 244597 / C. spectabilis	South Africa	0.0 c
C. breviflora	Brazil	25.2 ab
Corn	US	42.4 a
Acknow	vledgements	

and hairy indigo cover crops at 9 weeks after planting.

Farm	Cover Crop	Broadleaf	Grasses	Sedges	Total
			(kg/ł	na)	
Citra	Weedy	20	186	94	301
(PSREU)	Sunn hemp	25	92	139	256
	Hairy indigo	5	97	111	213
Frog	Weedy	6237 a	217	273 a	6727 a
Song	Sunn hemp	473 b	0	8 b	481 b
Organics	Hairy indigo	2709 b	0	0 b	2709 b
Rosie's	Weedy	200	3796 a	214 a	4267 a
Organic Farm	Sunn hemp	1	42 b	46 b	89 b
	Hairy indigo	0	182 b	18 b	200 b

Accession	Origin	Nematodes/100 cm ³ soil
PI 207657	Sri Lanka	4.0 bc
PI 219717	Myanmar	0.0 c
PI 250485	India	3.4 bc
PI 250486	India	3.8 bc
PI 250487	India	0.0 c
PI 314239	Former USSR	0.0 c
PI 322377	Brazil	12.8 b
PI 337080	Brazil	7.8 bc
PI 391567	South Africa	0.0 c
PI 426626	Pakistan	0.0 c
PI 468956	US	0.0 c
Corn	US	60.0 a

This project was partially funded by a grant from the Walmart Foundation and was administered by the University of Arkansas System Division of Agriculture Center for Agricultural and Rural Sustainability. Guilherme Braz's scholarship was funded by Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES). Dr. Joe Noling provided the sting nematodes. *Crotalaria* germplasm in Tables 4 and 5 was sourced from USDA-ARS – Plant Genetic Resources Conservation Unit, Griffin GA.

Walmart > <

