

Effect of controlled atmosphere packaging on overall quality of wonderful pomegranate

Bustamante, A.^{1*}, <u>Lizana, A</u>.^{1,3}, Henríquez, J.L.^{1.2}, Escalona, V.^{1,3}

ASHS Annual Conference 2015, New Orleans, USA.

University of Chile, Faculty of Agricultural Sciences, Santiago, Chile.

1: Center of Postharvest Studies (CEPOC, www.cepoc.cl), 2: Department of Plant Health, 3: Department of Agricultural Production

*anbustama@ug.uchile.cl

60+2

45+2

Time (days)

30 + 2

75+2

INTRODUCTION

The cold storage of fruits is a key step to guarantee the product quality.

However, temperatures below 5°C could cause chilling injury, browning, husk

pitting and discoloration of pomegranates. Controlled atmosphere could

controlled atmosphere for 75 days at 5 ° C.

RESULTS

(5 °C).

The respiratory rate of pomegranates decreased at lower storage temperatures,

showing the effect of this parameter on fruit metabolism with values ranging from

4-6.9 mg CO₂ kg⁻¹h⁻¹ and 4-8 mg CO₂ kg⁻¹h⁻¹ at 0 and 5 °C, respectively (Fig.1).

help to delay the loss of quality and thus extend the shelf life of fresh fruit

due to a reduction in respiratory activity, ripening, softening, incidence of

physiological disorders and pathogen growth (Palou *et al.,* 2007).

OBJECTIVE

The objective of this work was the assessment of two controlled atmosphere conditions (5 % O_2 - 5 % CO_2 and 5 % O_2 - 10 % CO_2) on pomegranate overall quality under cold storage (0 and 5 °C) during 75 days.

MATERIALS AND METHODS

The gaseous combination 5% O_2 + 5% CO_2 had the lowest respiration rates with

values ranging from 4 to 5.6 mg CO₂ kg⁻¹ h⁻¹ (0 °C) and 5.9 to 5.1 mg kg⁻¹ CO₂ h⁻¹

No differences were observed between treatments in trititable acidity (1.1-2%) and total soluble

solids (12-16%) during storage.

of pomegranates.

(Sodium hypochlorite 200 ppm x 3 min)

Selection and cleaning stage

Controlled atmosphere treatments and cold storage

Treatment	Gaseous concentration $O_2(\%) + CO_2(\%)$	Storage Temperature (°C)
21+ 0 0°C	21+0	0
21+ 0 5°C	21+0	5
5+5 0°C	5+5	0
5+5 5°C	5+5	5

The storage at higher temperatures caused an increase in weight losses with treatments 5% $\frac{1}{2}$ 40

storage at 0 y 5 °C.

	Fig. 3: Pomegranate mesocarp tone evolution during contro atmosphere storage at 0 y 5 °C.
ng in ' seve	jury of pomegranates stored under controlled atmosphere at 0 y 5 °C. 1: without damage, 2: slight, 3: moderat ere.
S	Pomegranate mesocarp chilling injury (%)

20

Treatments	Pomegranate mesocarp chilling injury (%)							
	30+2 (days)		45+2 (days)		60+2 (days)		75+2 (days)	
	%	injury ¹	%	injury	%	injury	%	injury
21+0 0°C	67 b ²	2	44 b	2	100 a	2	67 b	2
21+0 5°C	0 d	1	0 d	1	67 b	2	33 c	2
5+5 0°C	33 c	2	33 c	2	67 d	2	67 b	2
5+5 5°C	0 d	1	0 d	1	33 c	2	33 c	2
5+10 0°C	100 a	3	100 a	3	100 a	4	100 a	4
5+10 5°C	0 d	1	0 d	1	100 a	2	67 b	2

The chilling injury of pomegranates was observed after 30 days in fruit stored at 0 °C. This disorder was more evident in treatment 5% O_2 + 10% CO_2 with 100% of the fruit with moderate damage. While treatments 5% O_2 + 5% CO_2 and 21% O_2 + 0% CO_2 showed mild chilling injury with 33 and 67% of pomegranates damaged, respectively. Fruit stored under 5% O_2 + 5% CO_2 , presented only a 33% of the fruit with slight damage at the end of storage (Table 1).

Table 1. Chilli

severe, 5: very

CONCLUSIONS

 \rightarrow The controlled atmosphere technology allows to extend the shelf life of cold stored pomegranates until

60+2 days with slight changes in overall quality, weight loss and color (lightness, saturation and hue).

 \rightarrow Results showed the feasibility of controlled atmosphere to preserve pomegranates specially when

 $5\% O_2 + 5\% CO_2$ treament was applied during storage at 5 °C.

Palou, L., Crisosto, C. H., & Garner, D. (2007). Combination of postharvest antifungal chemical treatments and controlled atmosphere storage to control gray mold and improve storability of 'Wonderful'pomegranate *Postharvest biology and technology, 43*(1), 133-142.

This work was supported by INNOVA, CORFO N° 11BPC-10035 and FONDECYT postdoctoral N° 3130460 projects.