

# **Examining Various Phytochemical Attributes of Southern Highbush and Rabbiteye Blueberry Genotypes**

Rachel A. Itle<sup>1</sup>, D. Scott NeSmith<sup>1</sup>, Daniel L. Jackson<sup>2</sup>, Jordan T. Burbage<sup>2</sup>, and Parshall B. Bush<sup>2</sup>

<sup>1</sup>Department of Horticulture, University of Georgia, 1109 Experiment Street, Griffin, GA 30223.

<sup>2</sup>Agricultural and Environmental Services Laboratories, University of Georgia, 2300 College Station Road, Athens, GA 30602.

#### Summary

Georgia blueberry production includes both rabbiteye (V. virgatum Aiton), sold as fresh and frozen, and southern highbush (species complex between Vaccinium corymbosum L. and V. darrowii Camp) sold primarily as fresh earlier in the season. The main objective of this study was to examine various phytochemical attributes of varieties grown in Georgia. Fruit were harvested at ca. 50% ripe from nine southern highbush and seven rabbiteye blueberry genotypes grown at the University of Georgia Blueberry Research Farm near Alapaha, GA during 2014. Southern highbush genotypes included 'Camellia', 'Emerald', 'Farthing', 'Legacy', 'Meadowlark', 'Rebel', and 'Star', and two advanced breeding selections: TH-1111 and TH-1125. Rabbiteye genotypes included 'Alapaha', 'Brightwell', 'Ochlockonee', 'Powderblue', 'Premier', 'Tifblue', and 'Vernon'. Fruit were frozen for seven to eight months before chemical analyses. Measurements included total titratable acids (TTA), soluble solids

Overall, southern highbush genotypes were significantly higher (P<0.05) for total titratable acids (0.69% vs. 0.43%), and rabbiteye genotypes were significantly higher for soluble solids (13.4%) vs. 11.6%) and sugar acid ratio (°brix /TTA) (34.5 vs. 23.3). Sucrose was significantly higher in rabbiteyes (2.54 mg/g vs. 0.10 mg/g), and rabbiteyes were significantly higher for three of the six organic acids (oxalic, succinic, and malic acid) and were over 60% higher for total acids (12.2 mg/g vs. 7.5 mg/g). For antioxidants, rabbiteyes were 23% higher for catechin (39.7µg/g vs. 32.3µg/g), two times higher for caffeic acid (108.6  $\mu$ g/g vs. 52.7  $\mu$ g/g), over four times higher for quercetin (7,831) µg/g vs. 1,743 µg/g), 50% higher for ferulic acid (33.0 µg/g vs. 22.0 µg/g) and 37% higher for total antioxidants (20,482  $\mu$ g/g vs. 14,934  $\mu$ g/g). Results from this study show variation within genotypes for fruit quality and suggest that rabbiteye varieties are quite high in many important compounds. Future studies will be conducted to determine the effect of fruit quality across years and in consumer perception.

content (°brix), total monomeric anthocyanin concentration (mg/L cyanidin-3-glucoside equivalents), sugars, organic acids, antioxidants, and sugar acid ratio (°brix /TTA and total sugars/total acids).

## **Fruit Collection and Traits Measured**

Fruit Collection: Fruit from early, mid and late season ripening genotypes of 9 southern highbush (SHB), including 2 breeding selections, and 9 rabbiteye (RE), were collected from the UGA Blueberry Research Farm. Fruit were harvested from 3 plants (reps) per genotype when approximately 50% ripe, from May – July 2014. Fruit were packed in coolers, and transported back to UGA Griffin campus, Griffin, GA. Fruit were stored in freezer bags at approximately -15°C until processing.

Juice Extraction and Traits Evaluated: Frozen berries were thawed, and juice was extracted from 50+/- 1.0g of fruit. Titratable acids (TTA) (citric acid equivalents) were measured using a 0.01M NaOH solution to an endpoint titration of pH=8.1. Soluble solids content (°brix) were measured using a Digital Hand-held Pocket Refractometer. Total monomeric anthocyanin concentration (mg/L cyanidin-3-glucoside equivalents), sugars, organic acids, antioxidants, and sugar acid ratio (°brix /TTA and total sugars/total acids), as well as total sugar, organic acid, and antioxidant content were determined.

**Data Analyses:** Data were analyzed using PROC GLM in SAS (v.9.4) to examine genotype and type differences. Genotype differences were examined using the Tukey HSD ( $P \le 0.05$ ).

### **Results: °Brix and TTA**

Table 1. Percent juice<sup>A</sup>, total titratable acids (TTA), and soluble solids (°brix) in nine southern highbush (SHB) and seven rabbiteye (RE) genotypes harvested from Alapaha, GA in 2014.

|     | Genotype    | Ν  | % Juice              | TTA       | рН      | °Brix    | °Brix/TTA |
|-----|-------------|----|----------------------|-----------|---------|----------|-----------|
| SHB | Camellia    | 3  | 27.2BDC <sup>B</sup> | 0.88BA    | 3.8CEBD | 11.3EGF  | 12.9G     |
|     | Emerald     | 3  | 42.2BAC              | 1.06A     | 3.8CEBD | 11.9EGDF | 11.3G     |
|     | Farthing    | 2  | 33.3BDAC             | 0.57FBEDC | 3.8CEBD | 12.2EDF  | 22.1FGED  |
|     | Legacy      | 3  | 23.3DC               | 0.87BAC   | 3.9CBD  | 10.6G    | 13.5G     |
|     | Meadowlark  | 3  | 35.3BDAC             | 0.31FE    | 4.5A    | 12.2EDF  | 40.3BDC   |
|     | Rebel       | 3  | 19.3DC               | 0.22F     | 4.6A    | 13.1BDC  | 61.6A     |
|     | Star        | 3  | 23.9DC               | 0.58BEDC  | 4.1B    | 11.4EGF  | 19.7FGE   |
|     | TH-1111     | 3  | 53.9A                | 0.65BDC   | 4.0CB   | 11.3EGF  | 17.5FG    |
|     | TH-1125     | 3  | 29.6BDC              | 1.00A     | 3.8CEBD | 10.8GF   | 11.0G     |
| RE  | Alapaha     | 3  | 20.2DC               | 0.36FED   | 3.9CBD  | 13.9BAC  | 38.4BEDC  |
|     | Brightwell  | 3  | 49.3BA               | 0.29FE    | 4.0CB   | 14.5BA   | 51.3BA    |
|     | Ochlockonee | 3  | 29.1BDC              | 0.33FED   | 3.7CED  | 14.9A    | 45.4BAC   |
|     | Powderblue  | 3  | 27.2BDC              | 0.54FEDC  | 3.5E    | 14.9A    | 27.9FGEDC |
|     | Premier     | 3  | 18.8D                | 0.56FBEDC | 3.6ED   | 11.2GF   | 22.1FGED  |
|     | Tifblue     | 3  | 56.9A                | 0.62BEDC  | 3.7CED  | 12.6EDC  | 20.5FGE   |
|     | Vernon      | 3  | 36.9BDAC             | 0.33FED   | 3.7CED  | 11.9EGDF | 36.2FBEDC |
| SHB |             | 26 | 32.0A                | 0.69A     | 4.0A    | 11.6B    | 23.3B     |
| RE  |             | 21 | 34.0A                | 0.43B     | 3.7B    | 13.4A    | 34.5A     |

### **Results: Sugars, Acids, Anthocyanins and Antioxidants**

Table 2. Sugars<sup>A</sup> and relative sweetness<sup>B</sup> in nine southern highbush (SHB) and seven rabbiteye (RE) genotypes harvested from Alapaha, GA in 2014.

|     | Genotype    | Ν  | Sucrose             | Glucose  | Fructose | Total Sugar | Total Sugar/            | Relative  |
|-----|-------------|----|---------------------|----------|----------|-------------|-------------------------|-----------|
|     |             |    |                     |          |          |             | Total Acid <sup>A</sup> | Sweetness |
| SHB | Camellia    | 3  | 0.03 D <sup>c</sup> | 15.1BC   | 15.8DC   | 30.9DC      | 4.9A                    | 39.0BC    |
|     | Emerald     | 3  | 0.04 D              | 22.1BAC  | 21.8BDAC | 44.0BDAC    | 3.5A                    | 54.9BAC   |
|     | Farthing    | 2  | 0.01D               | 19.5 BAC | 20.5BDAC | 40.0BDAC    | 5.7A                    | 50.6BAC   |
|     | Legacy      | 3  | 0.02 D              | 19.5 BAC | 12.9D    | 25.7D       | 4.2A                    | 32.1C     |
|     | Meadowlark  | 3  | 0.42D               | 12.1C    | 19.8BDC  | 39.7BDC     | 6.8A                    | 49.7BC    |
|     | Rebel       | 3  | 0.02 D              | 12.3C    | 13.2D    | 25.3D       | 5.0A                    | 41.4BC    |
|     | Star        | 3  | 0.26D               | 27.9BA   | 13.0D    | 25.6D       | 5.8A                    | 32.2C     |
|     | TH-1111     | 3  | 0.05 D              | 13.3C    | 14.2DC   | 56.2BAC     | 4.0A                    | 32.3C     |
|     | TH-1125     | 3  | 0.03 D              | 11.9C    | 12.6D    | 27.5DC      | 4.3A                    | 70.5 BA   |
| RE  | Alapaha     | 3  | 1.69CD              | 32.4A    | 35.0A    | 26.3DC      | 13.3A                   | 34.8BC    |
|     | Brightwell  | 3  | 2.78CB              | 12.8C    | 16.3DC   | 70.1BA      | 4.8A                    | 32.7BC    |
|     | Ochlockonee | 3  | 1.33CD              | 15.5BC   | 17.8DC   | 33.1DC      | 2.5A                    | 88.2A     |
|     | Powderblue  | 3  | 3.31B               | 17.0BC   | 8.8D     | 38.0DC      | 2.5A                    | 47.1BC    |
|     | Premier     | 3  | 0.02 D              | 8.1C     | 28.3BAC  | 16.9D       | 2.4A                    | 21.5C     |
|     | Tifblue     | 3  | 7.21A               | 32.3A    | 32.8BA   | 72.3A       | 3.4A                    | 88.8A     |
|     | Vernon      | 3  | 1.42CD              | 11.7C    | 13.4DC   | 26.5DC      | 3.9A                    | 33.7BC    |
| SHB |             | 26 | 0.10B               | 17.1A    | 17.6A    | 34.8A       | 4.9A                    | 43.8A     |
| RE  |             | 21 | 2.54A               | 18.4A    | 19.5A    | 40.5A       | 4.7A                    | 50.5A     |

<sup>c</sup> Differences examined using the Tukey HSD ( $P \leq 0.05$ ). <sup>B</sup>Relative sweetness=(sucrose\*1)+(glucose\*0.75)+(fructose\*1.75).

Table 4. Total anthocyanins<sup>A</sup> and antioxidants<sup>B</sup> in nine southern highbush (SHB) and seven rabbiteye (RE) genotypes harvested from Alapaha, GA in 2014. Total Catochin Caffoir Arid Genatyne Forulic Acid Total **Nuorcotin** 

| Genotype     | IN | IUtai               | Calecinii | Calleic Aciu | Quercetin   | Ferunc Aciu | Ισται        |
|--------------|----|---------------------|-----------|--------------|-------------|-------------|--------------|
|              |    | Anthocyanins        |           |              |             |             | Antioxidants |
| SHB Camellia | 3  | 131.9A <sup>C</sup> | 32.7BDC   | 14.6C        | 796.8 E     | 13.3CD      | 9,438 DC     |
| Emerald      | 3  | 161.2A              | 34.8BDC   | 98.7BC       | 3,601.1 ED  | 24.8CBD     | 24,443 BAC   |
| Farthing     | 2  | 156.8A              | 40.3BDAC  | 14.3C        | 736.1 E     | 31.4CBD     | 11,908 BDC   |
| Legacy       | 3  | •                   | 23.8D     | 20.2C        | 1,457.8 E   | 17.2CD      | 9,037 DC     |
| Meadowlark   | 3  | 118.7A              | 35.3BDC   | 36.2C        | 856.9 E     | 28.0CBD     | 18,904 BDAC  |
| Rebel        | 3  | 118.6A              | 23.1D     | 13.0C        | 516.2 E     | 5.6D        | 6,296 D      |
| Star         | 3  | 109.9A              | 20.6D     | 60.8BC       | 2,176.4 ED  | 15.0CD      | 9,238 DC     |
| TH-1111      | 3  | 114.2A              | 53.4BAC   | 136.2BAC     | 3,160.0 ED  | 44.5B       | 31,429A      |
| TH-1125      | 3  | 182.6A              | 29.0DC    | 64.0BC       | 1,979.7 E   | 20.9CBD     | 12,590 BDC   |
| RE Alapaha   | 3  | 147.6A              | 19.5D     | 31.3C        | 2,653.0 ED  | 21.2CBD     | 8,231 DC     |
| Brightwell   | 3  | 127.4A              | 59.6BA    | 125.9BAC     | 9,914.1 BAC | 32.0CB      | 30,252A      |
| Ochlockonee  | 3  | 197.2A              | 30.3DC    | 230.9A       | 15,627.2 A  | 36.2CB      | 30,012 BA    |
| Powderblue   | 3  | 174.9A              | 39.9BDC   | 181.4BA      | 10,730.7 BA | 77.4A       | 23,931BAC    |
| Premier      | 3  | 115.1A              | 27.2DC    | 42.0C        | 3,992.5 EDC | 13.7CD      | 7,541 D      |
| Tifblue      | 3  | 192.9A              | 67.5A     | 99.0BC       | 8,350.7 BDC | 34.0CB      | 27,971BA     |
| Vernon       | 3  | 132.3A              | 33.9BDC   | 49.6C        | 3,549.4 ED  | 16.4CD      | 15,440BDAC   |
| SHB          | 26 | 135.4A              | 32.3B     | 52.7B        | 1,743.5 B   | 22.0B       | 14,934B      |
| RE           | 21 | 155.4A              | 39.7A     | 108.6A       | 7,831.1 A   | 33.0A       | 20,482A      |

<sup>A</sup> Total monomeric anthocyanin concentration expressed in <sup>B</sup> Values expressed in μg/g fresh weight. <sup>C</sup> Differences examined using the Tukey HSD (P≤0.05). (mg/L cyanidin-3-glucoside equivalents).

Table 3. Acids<sup>A</sup> in nine southern highbush (SHB) and seven rabbiteye (RE) genotypes harvested from Alapaha, GA in 2014.

|     | Genotype    | Ν  | Oxalic                | Citric  | Tartaric | Ascorbic | Succinic | Malic    | Total Acids |
|-----|-------------|----|-----------------------|---------|----------|----------|----------|----------|-------------|
| SHB | Camellia    | 3  | 0.0020EF <sup>B</sup> | 2.36CB  | 0.10A    | 0.12CD   | 0.32C    | 0.20BAC  | 6.3 DEC     |
|     | Emerald     | 3  | 0.0031EF              | 4.25A   | 0.15A    | 0.18BC   | 2.41BC   | 0.16BAC  | 12.5BDEC    |
|     | Farthing    | 2  | 0.0025EF              | 1.62CBD | 0.09A    | 0.15BCD  | 1.38BC   | 0.07 BAC | 6.9BDEC     |
|     | Legacy      | 3  | 0.0017EF              | 0.95ED  | 0.21A    | 0.09CD   | 0.22C    | 0.05BC   | 5.8DE       |
|     | Meadowlark  | 3  | 0.0026EF              | 1.11ED  | 0.02A    | 0.16BCD  | 1.16BC   | 0.10BAC  | 5.9DEC      |
|     | Rebel       | 3  | 0.0014F               | 0.25E   | 0.07A    | 0.09CD   | 1.26BC   | 0.07BC   | 5.0DE       |
|     | Star        | 3  | 0.0018EF              | 1.22CED | 0.01A    | 0.10CD   | 0.74BC   | 0.07BC   | 4.4E        |
|     | TH-1111     | 3  | 0.0040EDF             | 2.81B   | 0.13A    | 0.24BA   | 2.59BC   | 0.11BAC  | 14.3BAC     |
|     | TH-1125     | 3  | 0.0022EF              | 2.83B   | 0.10A    | 0.13CD   | 0.82BC   | 0.10BAC  | 6.5 DEC     |
| RE  | Alapaha     | 3  | 0.0047EDF             | 0.09E   | 0.09A    | 0.07D    | 1.51BC   | 0.03C    | 5.3DE       |
|     | Brightwell  | 3  | 0.0141A               | 0.21E   | 0.08A    | 0.24BA   | 2.31BC   | 0.13BAC  | 15.0BA      |
|     | Ochlockonee | 3  | 0.0083BDC             | 0.14E   | 0.02A    | 0.15BCD  | 3.94BA   | 0.16BAC  | 13.1BDAC    |
|     | Powderblue  | 3  | 0.0098BAC             | 0.19E   | 0.05A    | 0.13CD   | 6.46A    | 0.08BAC  | 15.3BA      |
|     | Premier     | 3  | 0.0065EDC             | 0.10E   | 0.03A    | 0.09D    | 1.41BC   | 0.27A    | 7.0BDEC     |
|     | Tifblue     | 3  | 0.0115BA              | 0.35ED  | 0.10A    | 0.30A    | 6.48A    | 0.24BA   | 21.3A       |
|     | Vernon      | 3  | 0.0044EDF             | 0.23E   | 0.07A    | 0.12CD   | 4.27BA   | 0.08BAC  | 8.5 BDEC    |
| SHB |             | 26 | 0.0024B               | 1.95A   | 0.10A    | 0.14A    | 1.21B    | 0.10B    | 7.5B        |
| RE  |             | 21 | 0.0085A               | 0.19B   | 0.06A    | 0.16A    | 3.77A    | 0.14A    | 12.2A       |

<sup>B</sup> Differences examined using the Tukey HSD ( $P \leq 0.05$ ). <sup>A</sup> Values expressed in mg/g fresh weight.

#### **Summary: Comparing SHBs to REs**

• Overall there were significant differences for genotypes for nearly all traits examined (Tables 1-4).

• SHBs were higher than REs for TTA, and REs were higher than SHBs for °brix and °brix/TTA (Table 1).

• Sucrose was higher in REs, and SHBs and REs were not different for all other sugars, including relative sweetness (Table 2).

• REs were higher than SHBs for three of the six acids profiled and total acids. SHBs were higher than REs for citric acid. SHBs and REs were not different for taratric acid and ascorbic acid (Table 3).

• REs were higher than SHBs for all four antioxidants examined, including total antioxidants (Table 4).



#### Acknowledgements

Project funding provided by the GA Blueberry Growers' Association. The authors thank Ellis Moncrief, Tyler Brannon, C. Shane Tawzer, Steven Hudson, and Earl Cook for growing and maintaining the plants used for this study and for help harvesting fruit; and Alex Debese and Caleb Stephenson for help processing juice samples.