Clean WateR3 - REDUCE, REMEDIATE, RECYCLE: The genesis of a SCRI-CAP project

Sarah A. White1, James S. Owen2, John C. Majsztik1, R. Tom Fernandez3, Paul Fisher4, Charlie R. Hall5, Daniel R. Hitchcock1, Dewayne L. Ingram6, Alexa Lamm4, John D. Lea-Cox7, Jennifer L. Parke8

1Clemson University, 2Virginia Tech, 3Michigan State University, 4University of Florida, 5Texas A&M University, 6University of Kentucky, 7University of Maryland, 8Oregon State University

ABSTRACT

In September 2014, researchers received funding for a SCRI-Coordinated Agricultural Project (CAP) entitled “Clean WateR3 - REDUCE, REMEDIATE, RECYCLE – Enhancing Alternative Water Resources Availability and Use to Increase Profitability in Specialty Crops.” This project was initiated as a coordinated effort among a number of scientists through a multi-state research group (NC1186 Water Management and Quality for Ornamental Crop Production and Health) and resulted in a 2011 SCRI planning grant titled “Containment, Remediation, and Recycling of Irrigation Water for Sustainable Ornamental Crop Production.” Planning grant dollars were used to bring together scientists and stakeholders, conduct a national survey, and discuss and identify water use and management strategies employed by progressive growers throughout the U.S. Furthermore, funds were used to recruit scientists from various disciplines (socioeconomics, engineering, horticultural systems, plant pathology, environmental toxicology, and Extension), bring together a trans-disciplinary, multi-institutional research team, and over 18 months prioritize research areas of concern, refine project goals, and develop project objectives. Grant preparation was an iterative process that entailed two writing workshops for the team as a whole and a final core-writing group workshop prior to proposal submission. Overarching project goals encourage recycling and reuse of remediated irrigation runoff via developing an online decision support model available for grower use, and to research and select runoff treatment (remediation) technologies (TTS) suited for implementation at the individual site level. The Clean WateR3 team has already held its first project and Advisory Board meeting, where research on project objectives - including barriers to adoption - were refined and initiated. Outcomes of this project will help growers treat and reuse operational water to save valuable water resources, and reduce the environmental impact of runoff water.

Funding for this work was provided in part by the Hatch program of the National Institute of Food and Agriculture, U.S. Department of Agriculture, USDA-NIFA-SCRI # 2011-51181-30633 and USDA-NIFA-SCRI # 2014-51181-22372.

Clean Water3 - REDUCE, REMEDIATE, RECYCLE - Enhancing Alternative Water Resources Availability and Use to Increase Profitability in Specialty Crops

Project Goal: Encourage recycling and reuse of remediated irrigation runoff

- Develop online grower decision support tools
 - Integrate socioeconomic & biological data to enhance decision making resources
- Research and select runoff treatment technologies to manage contaminants

Clean WateR3 project goals grounded in developing informational tools for outreach; socioeconomic and biological research feed into the decision support system for growers.

Figure 4. Bridging the gap between research performed by the SCRI MINDS and SCRI Pathogen research teams. Evaluating runoff and contaminant control when water leaves the pot, to the point it enters a pond and may be reused.

Figure 5. Clean WateR3 project goals grounded in developing informational tools for outreach; socioeconomic and biological research feed into the decision support system for growers.

Figure 6. Water conveyance structures and Clean WateR3 team monitoring and evaluation of site challenges.

Figure 7. Reducing nutrient, pesticide, and pathogen loads leaving production areas can enhance efficacy of remediation technologies and ultimately use of recycle water by growers. We will use these information to develop a model “decision support tool” to help guide grower decision making.