

Physiological Response to Drought Stress and Water Use in Two Redbud (Cercis) Ecotypes

Susmitha Nambuthiri, Robert Geneve, and Sharon Kester Department of Horticulture, University of Kentucky

Introduction	Results				<i>Fig: 2</i> Photosynthesis of redbud liners grown in drying substrate in 7 gallon containers for nine	
Drought tolerance is an important adaptation for landscape plants. Redbud is an major landscape plant with two ecotypes (<i>Cercis canadensis canadensis</i> and <i>Cercis canadensis texensis</i>) that respond differently to substrate water availability. Our current studies have focused on growth and water use in Pot-in-Pot grown redbud plants during various time regimes for cyclic irrigation. Understanding the relative differences in whole plant physiology between redbud ecotypes will help interpretation of cyclic irrigation field data. The objective of the study was to measure gas exchange and water use between two ecotypes of <i>Cercis canadensis</i> .	Table 1: Gas exchange and transpiration				consecutive days in green house.	
	Photosythes (µmol CO ₂ m ⁻² ·s	Stoma is Conduc s ⁻¹) (mmol•n	atalTranspirationctance(ml. plant -1 · day-1)Stomatam-2•s-1)(greenhouse)count		$ \begin{array}{c c} 18 \\ \hline & \\ \hline \\ \hline$	
	7.7	0.129k	'Appalachian Re 1510a 'Oklahoma'	d' 11b	Hotosynthesis (hmole- hotosynthesis (hmole- black d) =	
	11.8a	0.153a	851b	25a		
	Table 2: Water use and sap flow				1 2 3 4 5 6 7 8 9	
	Relative water content	Sap flow (cm hr ⁻¹)	Leaf water potential (kPa)	Daily water use (ml . plant ^{-1 .} day ⁻¹) (pot in pot)	Day Photosynthesis rate decreased linearly in both cultivars with 'Oklahoma'	
		'Appalachian Red'			through out the drying event.	
	59.50	0.84a ²	'Oklahoma'	46168	Conclusions	
	69.8a	0.49b	15.3b	3660b	'Oklahoma' maintained around 35%	

- higher net photosynthesis compared to 'Appalachian Red'.
- 'Oklahoma' lost 26 g of water per \bullet plant per day through transpiration compared to 42 g of water for 'Appalachian Red'.

Materials and Methods

Three each Cercis Redbud plants: canadensis 'Appalachian Red' and Cercis canadensis texensis 'Oklahoma Red' liners were grown in 7-gallon containers filled with 85% pine bark: 15% peat (vol/vol) in greenhouse over a three-day dry down experiment repeated 3 times

Sap flow showed similar trend direct а to transpiration with 'Oklahoma' measurements transpiring almost twice as much water as 'Appalachian Red'.

'Oklahoma'' redbud plants had thicker, broader, heavy leaves and higher number of stomata per unit leaf area compared to 'Appalachian Red' plants which may be related to the observe higher relative leaf water content, stomatal conductance and net photosynthesis under drought stress conditions.

Substrate moisture sensors: EC5 in three representative containers per irrigation treatment.

Acquisition of water content: Campbell CR-1000 data logger. Irrigation was scheduled to replace

Physiological measures: Hourly sap flow (Sapflow meter) using Dynamax sensor, photosynthesis using (Licor-Canopy 6400). Relative water content, leaf water potential, and stomata count.

Fig 1. Average daily water use per day of redbud liners grown in 7 gallon pot-in-pot containers watered in the morning for over a 8 day non rainy period in August-September, 2014

'Oklahoma' maintained a 90% photosynthetic rate at or greater of maximum rate even under substrate water content of 0.27 m³·m⁻³, whereas 'Eastern' showed a significantly reduced photosynthesis rate beginning at substrate water contents of 0.31 $m^3 \cdot m^{-3}$.

The 'Oklahoma' redbud maintained physiological morphological and properties favoring higher drought tolerance than eastern redbud as the root substrate dried.

Acknowledgements

The authors wish to acknowledge funding from Horticulture Research Institute #578.

Day