Effect of bloom and fruit thinning on quality characteristics of ‘Harvester’ and ‘Redglobe’ peach fruit varieties in Georgia

Dario J. Chavez1, and Jeff Cook2

1University of Georgia, Department of Horticulture, Griffin Campus, Griffin, GA, 30223.
2University of Georgia Cooperative Extension. Area Peach Agent. Fort Valley, GA, 31030.

Introduction

Peach trees are traditionally fruit thinned between 30-45 days after full bloom (AFB) to maximize production efficiency and fruit size. Other thinning times and methods are available. Fruit thinning is the standard management practice used by peach growers due to its consistency. In the last few years, peach growers in Georgia have been evaluating the possibility of using bloom thinning in certain varieties. However, the end result and the effect of weather events (i.e. freezes) have not allowed the determination of benefits and/or losses produced by both methods. Bloom thinning can be done during the pink flower and open blossom stages. This method can be more beneficial than fruit thinning resulting in a 10-30% increase in fruit size and yield and a reduction of labor cost needed to thin fruit (Byers and Lyons, 1984, 1985).

Objective

Compare the efficiency of bloom and fruit thinning in Georgia peach production as measured by labor use, fruit characteristics, and overall yield.

Plant Material

Trees of ‘Harvester’ and ‘Redglobe’ peaches budded to ‘Guardian’ rootstock were established in 2008 at the USDA ARS Southeastern Fruit and Nut Research Lab, Byron, GA. A total of approx. 145 trees of ‘Harvester’ and 310 trees of ‘Redglobe’ were planted.

In 2014, three treatments were evaluated: no thinning, bloom thinning (at first pink stage or full bloom), and fruit thinning (38 days AFB). Bloom thinning consisted of removing flower buds in first pink stage (just before bud break) or after full bloom by rubbing the flowering wood and flower buds by hand (Fig. 2). Fruit thinning consisted of removing fruits by hand.

A split plot randomized complete block design, with varieties as main plots, were used. A total of seven blocks, with 5-6 replicates randomly assigned per treatment per block (tree as a replicate). Plots were maintained using the recommended procedures in the Southeastern peach, nectarine, and plum pest management and culture guide.

Materials and Methods

Variables. Flowering and ripening dates were recorded for each variety. The time necessary to thin a whole tree per treatment was measured using a digital timer. The personnel used for thinning work at commercial peach productions. Data for fruit per scaffold and tree trunk diameter were measured. Measurements were taken on one scaffold that was labeled per tree. Fruit were harvested once they reached commercial maturity. Multiple harvests were done and total yield was measured per tree.

Five fruit were selected randomly and rated individually per tree during harvest. Fruit were evaluated for several characteristics: blush (%), redness in the flesh (%), peach fuzz (1-9 scale, 1=undesirable and 9=almost none), fruit tip (1-9 scale, 1=highly pronounced and 9=almost none), firmness (1-9 scale, 1=soft and 9=highly firm), split pit, weight (g), and perimeter (mm). The subjective 1-9 scale represents value of 1 = undesirable to 9 = optimal. blush and redness in flesh were rated as percent coverage. Split pit was rated as present or absent.

Data analyses. Data analyses were performed using the PROC GLM procedure in SAS Software v.9.4 (Cary, NC). Mean comparisons for each treatment were performed using LSD test, p-value <0.05.

Results

- A freeze occurred the day after the bloom thinning was done. The elevation/freeze damage across the field was represented by the blocks within the experiment. The blocks (1,2,3) in the lower part of the field had a higher freeze damage in comparison with blocks (5,6,7) (Table 1; Figs. 1, 3, and 4).
- Although thinning time was reduced in approx. 50% when comparing fruit thinning and bloom thinning, the use of bloom thinning decreased the overall yield per tree for blocks with high freeze damage (Fig. 4).
- Differences between varieties were present. ‘Harvester’ was more susceptible to the freeze damage than was ‘Redglobe’ during that freezing event.
- Blocks (5,6,7) with low freeze damage showed lower time for thinning per tree, higher or equivalent yield per tree, higher fruit weight (only for ‘Redglobe’) than the standard fruit thinning procedure.

Fig. 2. Comparisons between bloom thinned and non-thinned peach limits. A) ‘Redglobe’ non-thinned, B) ‘Redglobe’ thinned, C) ‘Harvester’ non-thinned, and D) ‘Harvester’ thinned.

Table 1. ANOVA for ‘Harvester’ and ‘Redglobe’ varieties.

<table>
<thead>
<tr>
<th>Source</th>
<th>Treatment</th>
<th>Block</th>
<th>Fruit</th>
<th>Time</th>
<th>Fruit per Tree</th>
<th>Weight</th>
<th>Thinning</th>
<th>Perimeter</th>
<th>Fuzz</th>
<th>Tip</th>
<th>Firmness</th>
<th>Split Pit</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source</td>
<td>Treatment</td>
<td>Block</td>
<td>Fruit</td>
<td>Time</td>
<td>Fruit per Tree</td>
<td>Weight</td>
<td>Thinning</td>
<td>Perimeter</td>
<td>Fuzz</td>
<td>Tip</td>
<td>Firmness</td>
<td>Split Pit</td>
<td></td>
</tr>
<tr>
<td>Harvesters</td>
<td>Treatment</td>
<td>Block</td>
<td>Fruit</td>
<td>Time</td>
<td>Fruit per Tree</td>
<td>Weight</td>
<td>Thinning</td>
<td>Perimeter</td>
<td>Fuzz</td>
<td>Tip</td>
<td>Firmness</td>
<td>Split Pit</td>
<td></td>
</tr>
<tr>
<td>Harvesters</td>
<td>Treatment</td>
<td>Block</td>
<td>Fruit</td>
<td>Time</td>
<td>Fruit per Tree</td>
<td>Weight</td>
<td>Thinning</td>
<td>Perimeter</td>
<td>Fuzz</td>
<td>Tip</td>
<td>Firmness</td>
<td>Split Pit</td>
<td></td>
</tr>
<tr>
<td>Harvesters</td>
<td>Treatment</td>
<td>Block</td>
<td>Fruit</td>
<td>Time</td>
<td>Fruit per Tree</td>
<td>Weight</td>
<td>Thinning</td>
<td>Perimeter</td>
<td>Fuzz</td>
<td>Tip</td>
<td>Firmness</td>
<td>Split Pit</td>
<td></td>
</tr>
<tr>
<td>Harvesters</td>
<td>Treatment</td>
<td>Block</td>
<td>Fruit</td>
<td>Time</td>
<td>Fruit per Tree</td>
<td>Weight</td>
<td>Thinning</td>
<td>Perimeter</td>
<td>Fuzz</td>
<td>Tip</td>
<td>Firmness</td>
<td>Split Pit</td>
<td></td>
</tr>
<tr>
<td>Harvesters</td>
<td>Treatment</td>
<td>Block</td>
<td>Fruit</td>
<td>Time</td>
<td>Fruit per Tree</td>
<td>Weight</td>
<td>Thinning</td>
<td>Perimeter</td>
<td>Fuzz</td>
<td>Tip</td>
<td>Firmness</td>
<td>Split Pit</td>
<td></td>
</tr>
<tr>
<td>Harvesters</td>
<td>Treatment</td>
<td>Block</td>
<td>Fruit</td>
<td>Time</td>
<td>Fruit per Tree</td>
<td>Weight</td>
<td>Thinning</td>
<td>Perimeter</td>
<td>Fuzz</td>
<td>Tip</td>
<td>Firmness</td>
<td>Split Pit</td>
<td></td>
</tr>
</tbody>
</table>

*Fruit damage (fruit loss) in 2014 season is represented by background color with light blue (high damage), and light green (low damage). White background color represents analyses with all the blocks. Red font represents p-value ≤0.05.

Fig. 3. Average yield per tree (kg) for ‘Harvester’ variety among A) blocks and B) treatments; and ‘Redglobe’ variety among C) blocks, and D) treatments. Analyses based on all blocks. Similar letters within a chart are not significantly different, Fisher’s LSD test, p<0.05.

Fig. 4. Thinning treatment comparisons for thinning time and yield for ‘Harvester’ for A) high (blocks 1,2,3) and B) low (blocks 5,6,7) freeze damage. Thinning treatments comparisons for thinning time and yield for ‘Redglobe’ for C) high (blocks 1,2,3) and D) low (blocks 5,6,7) freeze damage. Thinning treatments comparisons for fruit weight and perimeter for ‘Redglobe’ for E) all blocks and F) low (blocks 5,6,7) freeze damage. Fisher’s LSD test, p<0.05.