
Fluorescent and LED Lighting Effects on Hydroponically Grown 'Winter Density' Bibb Lettuce Kent D. Kobayashi and Teresita D. Amore Tropical Plant & Soil Sciences Dept., College of Tropical Agriculture and Human Resources University of Hawaii at Manoa, Honolulu, HI 96822 USA

Introduction

There is growing concern about food safety, environmental impact, and efficient energy usage in horticultural production systems. Producing lettuce under artificial lighting could be a solution addressing these concerns.

Objective: Determine the effects of different light sources on the growth of compact 'Winter' Density' Bibb lettuce in a noncirculating hydroponic system.

Methods

- Lettuce seeds were started in Oasis cubes. Seedlings were transferred to 5.1-cm net pots in 1.9-L containers containing a hydroponic nutrient solution.
- Solution was Hydro-Gardens' Chem-Gro Hobby Formula 10-8-22 hydroponic fertilizer and magnesium sulfate (9.8% Mg).
- Plants were grown under red+blue+white lightemitting diodes (LEDs). Light level was 121 µmol/m²/s, photoperiod 16 h.
- After 10 days, half of the plants were moved under T5 high output fluorescent lighting for 10 more days. Light level was 118 µmol/m²/s, photoperiod 16 h.

Methods Fig. 1. T5 high output fluorescent lighting setup. Fig. 2. Light-emitting diode (LED) lighting setup. Results

Table 1. Lettuce height and dry weight (DW).

Plant height (cm)	Shoot dry weight (DW) (g)	Root DW (g)	Т р
18.4 ns	3.17	0.34	3
16.2	3.68	0.45	4
	height (cm) 18.4 ns	Plant height (cm)weight (DW) (g)18.4 ns3.17	Plant height (cm)weight (DW)Root DW (g)18.4 ns3.170.34

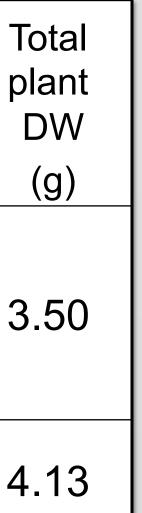


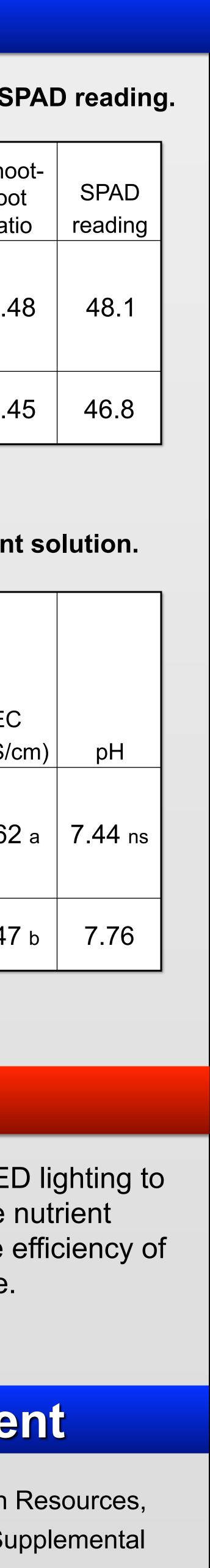
Table 2. Lettuce DW partitioning and SPAD reading.

Results

Treatment	Shoot DW partitioning (%)	Root DW partitioning (%)	Sho roo rat
Red+blue+ white LEDs, then fluorescent	90.4 ns	9.6	9.4
Red+blue+ white LEDs	89.4	10.7	8.4

Table 3. Lettuce hydroponic nutrient solution.

			1
	Shoot		
	DW /		
	nutrient	Nutrient	
	solution	solution	
	used	used	E0
Treatment	(mg/mL)	(mL)	(mS/
Red+blue+			
white LEDs,	2 07 .	069	
then	3.27 b	968 a	3.62
fluorescent			
Red+blue+ white LEDs	4.39 a	833 b	2.4


Conclusion

Moving lettuce plants from initial LED lighting to later fluorescent lighting can enhance nutrient solution use and nutrient solution use efficiency of hydroponically grown compact lettuce.

Acknowledgement

College of Tropical Agriculture and Human Resources, University of Hawaii at Manoa—CTAHR Supplemental Research Funding

