

Introduction

Survival rates of grafted transplants affect the costs of grafted transplant production. On average, grafted tomato have 98% survival while watermelon graft survival is 80%. The survival of grafted watermelon is lower due to the particular grafting technique used for this crop (one-cotyledon splice) and the susceptibility of the plant to desiccation following the grafting procedure. The graft union for watermelon tends to be slow to heal (7 to 9 days) and the plant must rely on moisture in the air for survival during this time period. In this study, we tested the use of commercial antitranspirant products (film-forming or stomata closing) to determine if they can increase survival of grafted watermelon.

Study Objective

Test if antitranspirants can increase survival of grafted watermelon.

Materials and Methods

Experimental Design

Randomized complete block design, 5 replications, 12 plants per plot, and repeated 2 times, 29 January and 2 February 2016.

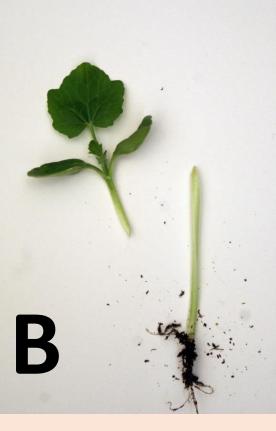
Plant Material

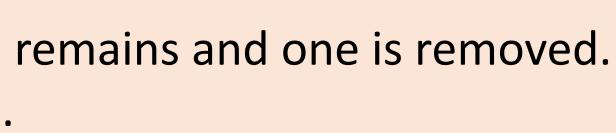

Scion watermelon (*Citrullus lanatus*) cv. Tri-X Palomar (triploid) Rootstock cv. Emphasis (*Lagenaria siceraria*)

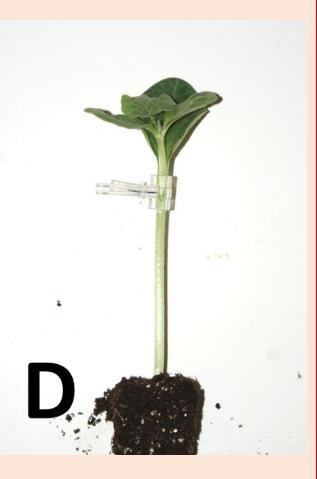
Treatments

- **1)** Moisturin: Apply to foliage before grafting, 10% solution (10 parts water:1 part Moisturin)
- 2) Root-Zone: Apply to soil before grafting, 1.56% solution (2 oz. root-zone in 1 gal water)
- 3) to soil (1.56% solution) before grafting
- 4) Water Control: Apply water to foliage (3 mL per plant) and soil (30 mL per cell) before grafting
- Graft plants, place in healing chamber for 7 to 9 days (Johnson et al., 2016).
- A Measure stomatal conductance of scion with leaf porometer (Decagon Device, Inc.
- Pullman, WA) before antitranspirant application and 1 and 2 days after application.
- Monitor plant survival 7, 10, 14, and 21 days after grafting.
- Data were analyzed using JMP (version 11.0; SAS Institute, Cary, NC).

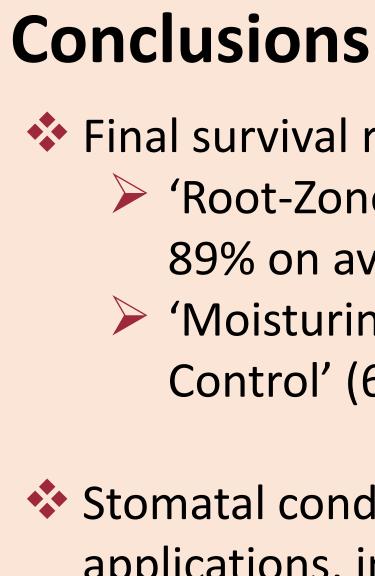
One-cotyledon Grafting Method

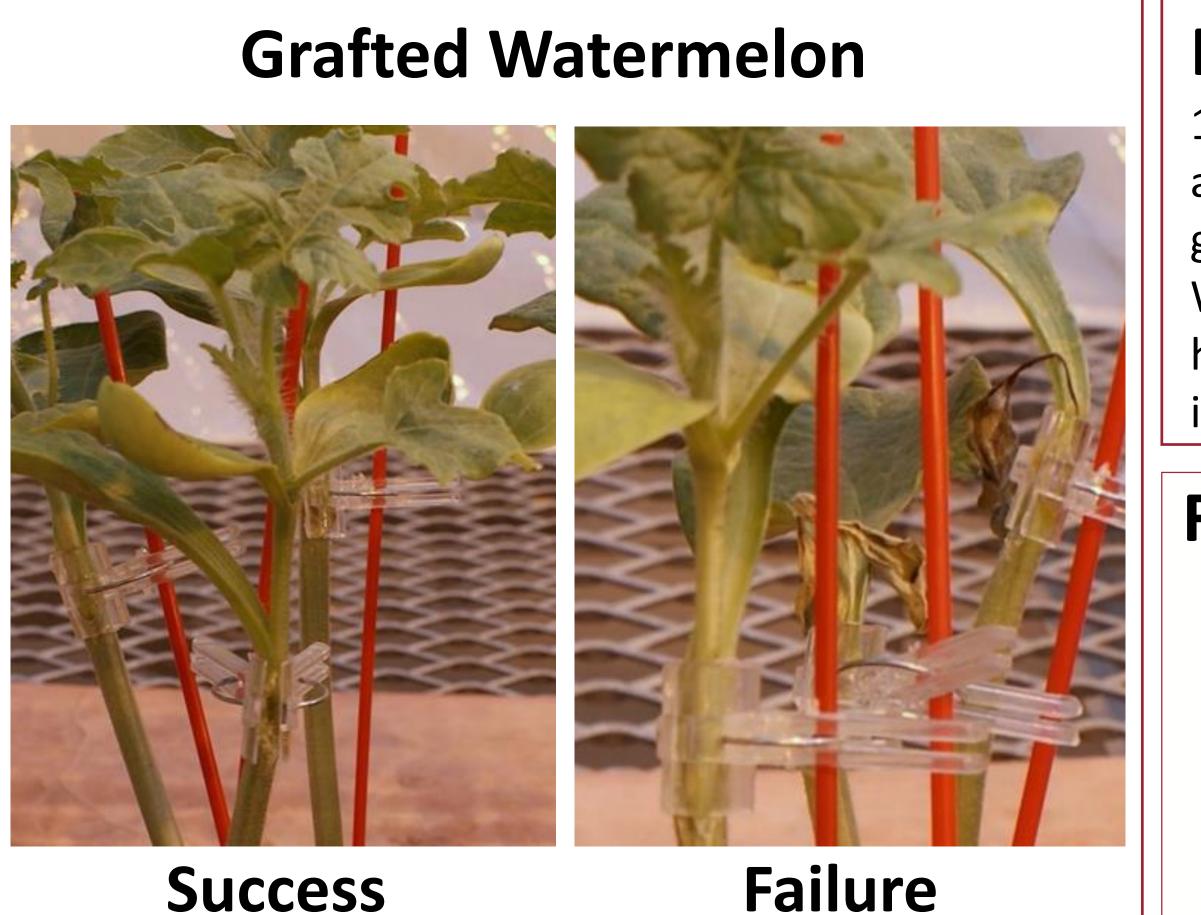

- Relatively simple, with low rootstock regrowth, the most commonly used manual grafting method for watermelon.
- Graft scion at 1 or 2 true-leaf stage and rootstock at 1 true-leaf stage.


A. Cut rootstock at 60° angle so one cotyledon remains and one is removed. **B.** Cut scion at 60° angle below the cotyledons. **C.** Place the two cut stem surfaces together. **D.** Hold plants together with grafting clip.


Antitranspirants Increase Survival of Grafted Watermelon Transplants Sahar Dabirian, Carol Miles, Edward Scheenstra and Patricia Kreider Department of Horticulture, Washington State University, Mount Vernon, NWREC http://vegetables.wsu.edu

Moisturin + Root-Zone: Apply Moisturin to foliage (10% solution) and apply Root-Zone





Results

	100
Survival %	80
	60
	40
	20
	0

Treatment Root-Zone Moisturin Moisturin + Water Conti *P*-value

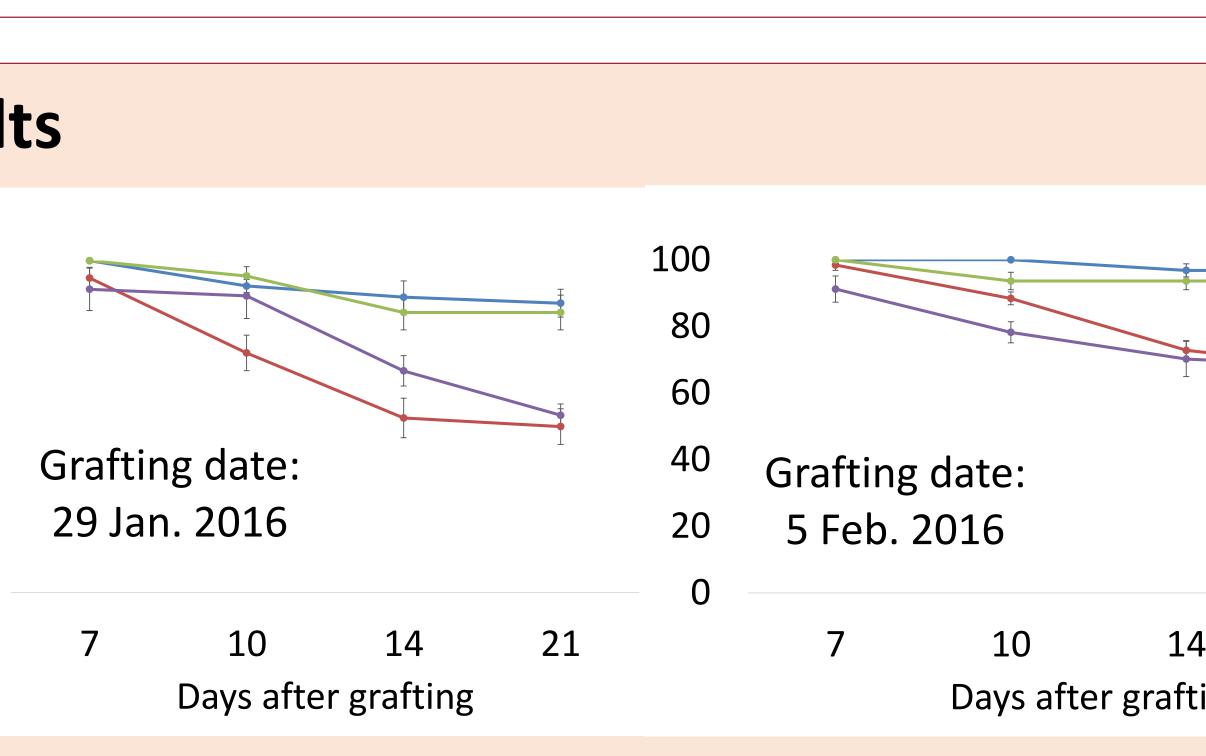


Figure 1. Mean survival (%) of grafted watermelon, 7, 10, 14, and

Table 1. Mean scion stomatal conductance
 just before antitranspirant application (day 0) and 1 and 2 days after application.

 Table 2. P-value for

 stomatal conductant days after antitransp

Stomatal conductance (mmol/m ² s)					С
	Day 0	Day 1	Day 2	Treatment	Da
	391	170 b	147 b	Root-Zone	
	260	223 b	187 b	Moisturin	
+ Root-Zone	225	89 c	118 b	Moisturin + Root-Zone	
trol	288	320 a	264 a	Water Control	
	0.33	0.0002	0.006		

Final survival rate of grafted watermelon differed due to antitrar 'Root-Zone' and 'Moisturin + Root-Zone' had the greatest su 89% on average, respectively).

'Moisturin' had the lowest survival rate (59 % on average), e Control' (61% on average).

Stomatal conductance decreased with 'Moisturin + Root-Zone', a applications, indicating less transpiration, and was lowest for 'M 1 day after application.

Referen

1. Johnson, and J. Rooz grafting: th Wash. State http://cru.o ions/FS100

Funding Washing Departm

- Agricultu SCBG No
- USDA-NI 2011-51

S NWREC Est.1947
Root-Zone Moisturin Moisurin + Root-Zone Water Control 21 21 days after grafting.
the contrast of ce before and 1 and 2 birant application. Ontrast stomatal conductance ay 0 vs. day 1 Day 0 vs. day 2 0.003 0.001 0.57 0.27 0.0002 0.12 0.64 0.71
nspirants (<i>P</i> < 0.0001): arvival rate (92% and equal to the 'Water and 'Root-Zone' loisturin + Root-Zone'
nce , S., C. Miles, P. Kreider, zen. 2016. Vegetable he healing chamber. e Univ. Ext. Bul. FS100E. cahe.wsu.edu/CEPublicat DE/FS100E.pdf g provided by: to State hent of ure b. K1506 IFA SCRI No. 181-30963