Foliar Applications of Boron and Calcium Fertilizers Do Not Improve Fruit Set of Northern Highbush Blueberry

Matthew Arrington M.S. and Lisa DeVetter PhD
Washington State University, Mount Vernon Research Center

ABSTRACT

Fruit set in northern highbush blueberry (Vaccinium corymbosum) can be low under certain climatic conditions and contributes to reduced yields, particularly in western Washington. The mechanisms influencing fruit set are complex, but poor fruit set can be associated with inadequate nutrient availability during critical stages of fruit and flower development. Boron (B) and calcium (Ca) may be of specific importance for reproductive developmental processes, but little research has been done to evaluate their influence on improving fruit set and yield in Washington blueberry. The objective of this project was to evaluate if foliar-applied B and Ca increase fruit set and resultant yields of highbush blueberry. Specific sub-objectives were to: 1) evaluate the effects of foliar applied B and Ca, alone or in combination, on fruit set, yield, and fruit quality (berry firmness and weight) of blueberry; and 2) Measure the effects of B and Ca application on blueberry pollen germination, tube growth, and fertilization potential. Commercially available fertilizers containing these nutrients were applied either alone or in combination as foliar sprays during the 2015 and 2016 growing season in western Washington. Nutrient were applied as: calcium chloride, calcium sulfate, and tetra borate foliar sprays, repeated 6 times per year, 7-10 days apart. Applications were timed from pink bud through petal fall in ‘Draper’ and ‘Bluecrop’. No significant increases were observed in fruit set, estimated yield, or fruit quality (berry firmness and weight) across any of the treatments, however, year and cultivar effects were observed. Increased B was observed in leaf tissue nutrient analyses in 2015 and 2016, suggesting foliar nutrient applications of B were effectively taken up by the plants. However, elevated levels did not lead to increased fruit set or yield. Results indicate that foliar applications of B and Ca, either alone or in combination under the conditions of the experiment, do not increase fruit nutrient levels, fruit set, yield, and attributes of berry quality in Washington blueberry.

OBJECTIVES

• Highbush blueberry relies on honey bees (Apis mellifera) for pollination in western Washington.
• Honey bee activity can be deficient during cool springs (e.g. air temp. below 13°C, wind speed above 20-25 kph, precipitation) (Butler, 1945) this can lead to reduced fruit set and yields.
• Increased B concentrations in pollen and floral tissues may increase pollen viability and subsequent set (Dell and Huang, 1997).
• Ca applied during dynamic stages of floral and fruit development may decrease abscission and increase fruit quality.
• Increased pollen and reproductive viability could lengthen the pollination window and increase fertilization rates, as well as subsequent fruit set and yields.

INTRODUCTION

In 2015 and 2016, ‘Draper’ and ‘Bluecrop’ plants were selected across four commercial grower sites in Whatcom and Skagit counties in Washington (two sites per cultivar). Five-plant treatment plots were established at each site. Treatments (Table 1) were randomized within a row and replicated four times per site.

Table 1. Treatments (Table 1) were randomized within a row and replicated four times per site.

MATERIALS AND METHODS

In 2015 and 2016, ‘Draper’ and ‘Bluecrop’ plants were selected across four commercial grower sites in Whatcom and Skagit counties in Washington (two sites per cultivar). Five-plant treatment plots were established at each site. Treatments (Table 1) were randomized within a row and replicated four times per site.

Table 1 lists treatment identification, year applied, product name, chemical formulation and form, rate, and concentration (in ppm).

Table 2. Results show analyses based on dry weights for leaf samples collected in July and Aug. and whole harvested fruit in 2015 and 2016 (n=20 per site with two sites per cultivar).

RESULTS

• Year and cultivar effects were observed.
• Pollen from treated flowers germinated at the same rate as the control with no significant difference (data not presented).
• Leaf B concentrations were increased significantly compared to the control. Calcium applications did not lead to significant differences in Ca concentrations in leaf tissue (Table 2). Tissue nutrient concentrations met or exceeded sufficiency standards.
• There were no significant differences in fruit set and estimated yield of treated plots compared to the untreated control (data not presented).
• Berry weight and fruit firmness was the same across treatments (data not presented).

CONCLUSIONS AND OUTLOOK

Boron and Ca applications did not improve fruit set, estimated yield, berry weight, or fruit firmness in ‘Bluecrop’ or ‘Draper’ plants under the conditions of this study. Pollen health and viability was also unchanged.

Increased product rates, alternative B and Ca forms and formulations with other nutrients, use of surfactants, and modified timings may increase B and Ca concentrations in blueberry and possibly lead to improved fruit set and yield for a region that chronically experiences low fruit set.

REFERENCES & ACKNOWLEDGMENTS

Special thanks to the Washington Blueberry Commission and Northwest Agricultural Research Foundation, whose funding allows for important projects like this. Also thanks to grower cooperators whose time and energy is always needed and appreciated.

CONTACT INFO:
Matt Arrington
Matthew.Arrington@wsu.edu