

Seong Kwang An¹, Hyun Jun Lee¹, Hyo Beom Lee¹, Yong Ha Rhie³, Jongyun Kim⁴ and Ki Sun Kim^{1,2*}

¹Department of Horticultural Science and Biotechnology, Seoul National University, Seoul 08826, Korea

²Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea

³Departmen of Horticulture, Pai Chai University, Daejeon 35345, Korea

⁴Division of Biotechnology, Korea University, Seoul 02841, Korea

IPF1

Introduction

Bark substrate was commonly used to grow Cymbidium in many countries. However, using the substrate spend a lot of water because of its physical properties. Thus, an alternative substrate is needed to prepare for upcoming water shortage problem. This study was conducted to select a suitable substrate and optimum volumetric water content (VWC) for cultivating *Cymbidium* using a sensor-based irrigation system (SIS).

Materials and Methods

Results

Step 1. Substrate water holding capacity and soil moisture sensor calibration to substrates

Plant

- Cymbidium 'Yang Guifei'
- Substrate
 - Pine bark
 - Coir
 - Coconut chip
 - Sphagnum moss
- **Experimental greenhouse conditions**
 - Average temperature : 20°C
 - Average relative humidity : 70%
 - Day length: natural day length

Step 1. Substrate water holding capacity and soil

Fig. 1. Moisture characteristic data and nonlinear regression curves for bark, coir, coconut chip and sphagnum moss

Fig. 2. Calibration data and linear calibration equation of four substrate, bark (A), coir (B), coconut chip (C) and sphagnum moss (D).

Water holding capacity (Fig. 1) $Coir \ge Sphagnum moss > Coconut Chip > Bark$

- Equation of each substrate by soil moisture sensor calibration (Fig. 2) - Coir : Y = 0.083x - 33.875- Sphagnum moss : Y = 0.0833x - 37.167- Coconut chip : Y = 0.0856x - 28.41- Bark : Y = 0.0513x - 15.25
- Bark could not hold water over approximately 20% (Fig. 2).

Step 2. Determination of the suitable substrate for growing *Cymbidium* **using SIS**

	BARK
-	COCONUT CHIP
·	SPHAGNUM MOSS

Table. 1. Growth characteristics of Cymbidium 'Yang Guifei' within four different substrates (bark, coir, coconut chip, and sphagnum moss). VWC was controlled at 20% during 12 weeks.

		Mother bulb							Lead bulb					
S SPHAGNUM MOSS	Substrate	e No. of Pseudobulb Leaf length Leaf width No. of new No. of							. of Pseudobulb Leaf length Leaf width No. of new					
eut		leaves	diameter (mm)	(cm)	(cm)	pseudobulb	SPAD	leaves	diameter (mm)	(cm)	(cm)	pseudobulb	SPAD	
out	Bark	9.4b ^z	39.8	57.2	2.2	0.8	61.6a	11.2ab	28.7a	37.2	2.3	0.7	46.0a	
ວ ພ 40 -	Coir	9.4b	40.5	58.6	2.2	0.6	58.3ab	11.7ab	27.5a	38.6	2.2	0.7	36.7b	
vate	Coconut chip	7.1c	39.7	55.5	2.3	0.3	52.8c	10.4c	24.6b	36.8	2.1	0.7	36.6b	
	Sphagnum moss	11.4a	39.4	53.9	2.2	0.8	63.9a	12.2a	28.7a	37.0	2.2	0.6	42.5ab	
	<u>Significance</u>	***y	NS	NS	NS	NS	**	**	***	NS	NS	NS	**	
	^z Mean seperation	within c	olumns by Tukey'	's honestly	significant	difference test	t at $P < 0.0$	5.						
10 -	^y NS, **, *** Not	n-signific	ant difference or s	significant	at <i>P</i> < 0.01	or < 0.001, res	spectively.							
⁰ ¹⁷⁻⁰²⁻⁰⁶ ¹⁷⁻⁰²⁻²⁰ ¹⁷⁻⁰³⁻⁰⁶ ¹⁷⁻⁰³⁻²⁰ ¹⁷⁻⁰⁴⁻⁰³ ¹⁷⁻⁰⁴⁻¹⁷ ¹⁷⁻⁰⁵⁻⁰¹ ¹⁷⁻⁰⁵⁻⁰¹ ¹⁷⁻⁰⁵⁻⁰¹ ¹⁷⁻⁰⁵⁻⁰¹ ¹⁷⁻⁰⁵⁻⁰¹ ¹⁷⁻⁰⁵⁻⁰¹	Table. 2. T substrate (1 20% during	 Fable. 2. The daily amount of water use of each substrate (n = 3) to maintain substrate VWC at 20% during the experiment. VWC of all substrates was well con Except for coconut chip, most of the experiment. 								trolled e growt				
of <i>Cymbidium</i> 'Yang Guifei' in 15-cm containers as maintained by a capacitance sensor-based	Substrate	ir	Average no. o rigation per da	f Av ay	verage wa per day	ater usage v (mL)		characteristics showed similar tendency (table						
irrigation system Plants were irrigated when	Bark		57.2		11448	3.4		Doulz	waa naada	durate	or obo	ut 140 ti	\mathbf{m}	
VIVO 1 11. 1 200/	Coir		0.4		83	3.6		Dalk	was neede	u wall		ut 140 ti		
vwC dropped below 20%.	Coconst chi	`	0.4		00) 5		than c	other subst	r substrates to maintain same VWC				
	Coconut chip	J	0.4		0).)								
	Sphagnum m	OSS	0.5		108	3.8		(table 2)	•					
Step 3. Examination of the optimum	m VWC f	or g	rowing	Cym	bidiu	am 'Ya	ng C	Juifei	'using S	SIS w	vithi	n coir s	substr	

moisture sensor calibration

- Moisture retention curves
- Soil moisture sensor
 - 10HS (Decagon Devices Inc., Pullman, WA, USA)
- Soil moisture sensor calibration
- **Step 2. Selecting suitable substrate for growing** Cymbidium using SIS
 - CR1000 (Campbell Scientific Co., Ltd, Logan, UT, USA)
 - SDM-CD16AC (Campbell Scientific Co., Ltd., Logan, UT, USA)
 - NDJ electric valve (Naan Danjain Irrigation Ltd., Israel)
 - PC spray stake (Netafim Ltd., Co., Israel)
- **Step 3. investigating the optimum VWC for growing** Cymbidium using SIS

Table. 3. Growth characteristics of Cymbidium 'Yang Guifei' at the different set point of VWC 0.1,	0.2, 0.3
and $0.4 \text{ m}^{-3} \cdot \text{m}^{-3}$.	

	Mother bulb							Lead bulb								
Volumetric water content (m ⁻³ ·m ⁻³)	No. of leaves	Pseudobulb diameter (mm)	Leaf length (cm)	Leaf width (cm)	No. of new pseudobulb	SPAD	No. of leaves	Pseudobulb diameter (mm)	Leaf length (cm)	Leaf width (cm)	No. of new pseudobulb	SPAD				
0.1							7									
0.2	6.6	34.0b ^y	51.7	2.2	0.3	69.1	12.3b	24.0b	51.4b	2.1	0.9	54.5				
0.3	6.8	37.0a	54.9	2.2	0.1	66.2	15.4a	27.2a	58.6a	2.1	1.3	53.6				
0.4	6.6	39.2a	55.5	2.3	0.0	65.4	14.1a	26.6ab	55.3ab	2.2	1.1	51.6				

Coir

- CR10X (Campbell Scientific Co., Ltd., Logan, UT, USA)
- SDM-CD16AC (Campbell Scientific Co., Ltd., Logan, UT, USA)
- AM416 (Campbell Scientific Co., Ltd., Logan, UT, USA)
- NDJ electric valve (Naan Danjain Irrigation Ltd., Israel)
- PC spray stake (Netafim Ltd., Co., Israel)

Fig. 4. The volumetric water content of coir substrate over the experiment. Dashed horizontal lines indicate the substrate water content at which the irrigation was turned on.

NS Significance NS ^zThey were excepted to ANOVA because almost plants were wilted after 24 weeks of 0.1m⁻³·m⁻³ treatment.

^yMean separation within columns by Tukey's henestly significant difference test at P < 0.05. ^xNS, **, *** Non-significant difference or significant at P < 0.01 or < 0.001, respectively.

- The set point of VWC was controlled from Feb. 2017 to Aug. 2017 (Fig. 4).
- 0.1 m⁻³·m⁻³ was a too dry condition to survive *Cymbidium* 'Yang Guifei' (Table 3).
- The *Cymbidium* was grown well at over $0.3 \text{ m}^{-3} \cdot \text{m}^{-3}$ of VWC significantly (Table 3).

Conclusion

- Coir and sphagnum moss can substitute bark substrate and save water use
- Considering water use, 0.3 m⁻³·m⁻³ of VWC was recommended to grow *Cymbidium*

This research was supported by Korea Institute of Planning & Evaluation for Technology in Food, Agriculture, Forestry, & Fisheries

E-mail : ahnsungkwang@snu.ac.kr, Tel : +82-2-880-4571