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1. Data

2. kmer correction and trimming

RNA was collected from roots of two blueberry species:

e Vaccinium arboreum (VA); diploid, pH tolerant

* V. corymbosum (VC); tetraploid, pH sensitive
Plants were grown at two pH levels:

 pH 4.5, control (blueberries prefer acidic soi

 pH 6.5,stressed (normal agricultural soil pH)

Genomic resources:
* Draft genome for diploid V. corymbosum [1]
 Gene annotations [2]

Raw reads require processing for:
* Quality control
 Removal of sequencing adapters
 Removal of low quality bases or short reads
Optional: kmer correction
* May improve the quality of base calls

)

We performed a combination of kmer correction
on the output of two trimming software packages,
yielding 4 sets of processed reads

» Uncorrected + Trimmomatic

» Uncorrected + skewer

» Corrected + Trimmomatic

» Corrected + skewer
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Introduction

Transcriptome analysis through RNA-Seq data is a well established tool in model organisms, but the data analysis when examining agricultural plants can be less straightforward. For example, in working
with blueberries, we have more than one species of interest, fewer genomic resources than many model plant systems, and various levels of polyploidy. When developing a workflow of software tools to
analyze this data, a researcher faces decisions among numerous algorithms at each step. Here, we have explored some of the current options available to analyze RNA-Seq data in two situations: first,
when the closest reference genome is from a different species and second, when a polyploid species is being sequenced but the closest reference genome is a diploid progenitor species.

RNA-Seq data was 100 bp
paired-end reads from
lllumina HiSeq sequencer

(A) Ferric chelate reductase (FCR)
activity was used as an indicator

of stress in roots. (B) Roots were
collected when activity was
significantly different. [3]

Illumina and trimmed reads
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Sequence data (Sample1-8 + Lane1-2 + R1-2)
lumina raw reads and processed with Skewer or Trimmomatic

Trimming kept ~99% of the raw reads with skewer and ~70% with Trimmomatic, which improved
overall quality in many samples. Usually, reverse reads have lower quality than forward ones.
The use of kmer correction with Rcorrector did not have a visible effect on sample quality check.

3. de novo transcriptome assembly

B. Distribution of cluster sizes

If there is no reference genome to be used, de novo assembly of reads is 25 s
necessary. Transcriptomes of plants under different conditions, especially under
stress, which triggers alternative splicing events, are expected to show diversity ...
of transcripts that can be captured by including many samples. However, o

including too many samples could yield a more fragmented assembly due to the H’W h score

heterozygosity across the samples.

We tested two strategies to examine the tradeoffs between these two concerns.

 Assemble 1 control and 1 treated sample and combine (2s)
* Pool reads from 2 control and 2 treated samples on assembler (4s)

Initial assemblies were simplified by clustering:
* CD-HIT clustered at 95% sequence identity

A Transcripts on assemblies, clusters and cds
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* RapClust clustered based on short read mapping to multiple transcripts Type of assemoly

Putative coding sequences (cds) were predicted transcripts using transdecoder

Transcript abundance and transrate score on Trinity
assemblies and subsets. Columns from left to right: raw
assemblies, cd-hit representative sequences, cds on cd-hit
set, RapClust representative sequences, cds after RapClust.

RapClust performed an aggressive clustering, which generated large-sized clusters (B, blue dots)
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4. Mapping

Mapping is the process of aligning the short reads to a sequence used as reference, such as:
e Genome: it is large, containing intronic and intragenic sequences that are not translated. The software used needs to deal
with splice sites. It provides a common set of reference genes for multi-species comparison.
* Transcriptome: it is much smaller, allowing faster mapping of reads. It may contain isoforms and alternative transcripts
product of alternative splicing. It is data specific.
Mapping is affected by SNPs and indels. Multiple mapping software options, based on distinct algorithms, are available.

A. VA and VC vs reference genome B. VA and VC vs de novo assemblies C. 3 species vs reference genome

Count rate distribution

Map and count rates to reference genome Map and count rates to de novo assemblies
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(A, B) Mapping profiles of reads from VA and VC to the diploid V. corymbosum reference [1] and to the transcriptomes generated by de novo assembly and clustering with CD-
HIT. Values are total mapping reads (map), with high quality (hqg) or total counts relative to the total amount of raw reads before trimming. On the genome, parameters
modified mismatch rate tolerance to default (def) or increased (0.1). On assemblies, mapping to 2s and 4s assemblies was compared. (C) Count profiles adding the hexaploid
rabbiteye blueberry (V. virgatum) mapping to the genome; corrected reads and default parameters. Rabbiteye reads are 2 x 75 bp from three tissues.

kmer correction had little effect on mapping results, and the change from trimming software was directly correlated with the
retained number of reads. On the genome (A), increasing mismatch tolerance did not modify results significantly, improving HISAT2
and worsening Bowtie2, which is better suited to work on references with higher similarity. Likely due to their algorithms, results
with the genome showed high dependence towards the mapping software utilized (A, C), sharing similar profiles between species.
For transcriptomes (B), those formed from 4 samples had slightly higher mapping rate, and results across aligners was near uniform

5. Correlation of gene counts

A. Correlation of gene counts VA

The methodology utilized to analyze the data has a potential impact on the results
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of downstream analyses (such as differential expression) if it produces different VC
count distributions. Correlation of count profiles based on the reference gene e
models was used as an indicator of the variation produced by each mapping S
strategy to the reference genome (A) and the similarity of the results obtained
from similar strategies using either reference or assembly (B). e e
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Here, the selection of trimming software had a significant effect on count profiles. I
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B Correlation of counts: de novo vs reference . . . .
Results comparing count profiles using the reference or assemblies
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6. Conclusions

A good workflow design can lead to more significant results and increase the likelihood of discovering all genes
involved in the process being studied. As shown, RNA-Seqg analysis is a multi-step pipeline and the availability of
several software packages create a need to understand their impact on results. Finally, the design of the analysis
pipeline will also depend on available resources and custom goals:

* |s there a reference genome that can be used? And how close is it to the species of study?
* Using a reference genome provides a common set of gene models for the study, helpful to share and compare results with
other researchers or compare results from different species

 What metrics are useful for comparing across software workflows?
* e.g. atarget statistic to improve could be the final number of reads or transcripts utilized for differential gene expression

* Is there interest in knowing specific transcript isoforms?
* de novo assemblies are useful to discover specific genes and isoforms in the data
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