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RNA was collected from roots of two blueberry species:
• Vaccinium arboreum (VA); diploid, pH tolerant

• V. corymbosum (VC); tetraploid, pH sensitive

Plants were grown at two pH levels:
• pH 4.5, control (blueberries prefer acidic soil)
• pH 6.5,stressed (normal agricultural soil pH)

Genomic resources:
• Draft genome for diploid V. corymbosum [1]
• Gene annotations [2]

Raw reads require processing for:
• Quality control
• Removal of sequencing adapters
• Removal of low quality bases or short reads

Optional: kmer correction
• May improve the quality of base calls

If there is no reference genome to be used, de novo assembly of reads is
necessary. Transcriptomes of plants under different conditions, especially under
stress, which triggers alternative splicing events, are expected to show diversity
of transcripts that can be captured by including many samples. However,
including too many samples could yield a more fragmented assembly due to the
heterozygosity across the samples.
We tested two strategies to examine the tradeoffs between these two concerns.

• Assemble 1 control and 1 treated sample and combine (2s)
• Pool reads from 2 control and 2 treated samples on assembler (4s)

Initial assemblies were simplified by clustering:
• CD-HIT clustered at 95% sequence identity
• RapClust clustered based on short read mapping to multiple transcripts

Putative coding sequences (cds) were predicted transcripts using transdecoder

We performed a combination of kmer correction 
on the output of two trimming software packages, 
yielding 4 sets of processed reads

➢ Uncorrected + Trimmomatic
➢ Uncorrected + skewer
➢ Corrected + Trimmomatic
➢ Corrected + skewer

Trimming kept ~99% of the raw reads with skewer and ~70% with Trimmomatic, which improved
overall quality in many samples. Usually, reverse reads have lower quality than forward ones.
The use of kmer correction with Rcorrector did not have a visible effect on sample quality check.

RapClust performed an aggressive clustering, which generated large-sized clusters (B, blue dots)
that reduced the number of total transcripts (A) improving greatly the Transrate scores (A), although
negatively affecting completeness (C). In contrast, CD-HIT generated smaller clusters (B, red dots)
keeping most of the initial transcripts (A), and improving only lightly the Transrate scores. Most of
the annotated BUSCOs (C) were maintained. Regarding the distribution of BUSCOs across clusters,
RapClust tended to aggregate more transcripts with similar annotation than CD-HIT (D).

4. Mapping

Mapping is the process of aligning the short reads to a sequence used as reference, such as:
• Genome: it is large, containing intronic and intragenic sequences that are not translated. The software used needs to deal

with splice sites. It provides a common set of reference genes for multi-species comparison.
• Transcriptome: it is much smaller, allowing faster mapping of reads. It may contain isoforms and alternative transcripts

product of alternative splicing. It is data specific.
Mapping is affected by SNPs and indels. Multiple mapping software options, based on distinct algorithms, are available.

kmer correction had little effect on mapping results, and the change from trimming software was directly correlated with the
retained number of reads. On the genome (A), increasing mismatch tolerance did not modify results significantly, improving HISAT2
and worsening Bowtie2, which is better suited to work on references with higher similarity. Likely due to their algorithms, results
with the genome showed high dependence towards the mapping software utilized (A, C), sharing similar profiles between species.
For transcriptomes (B), those formed from 4 samples had slightly higher mapping rate, and results across aligners was near uniform

The methodology utilized to analyze the data has a potential impact on the results
of downstream analyses (such as differential expression) if it produces different
count distributions. Correlation of count profiles based on the reference gene
models was used as an indicator of the variation produced by each mapping
strategy to the reference genome (A) and the similarity of the results obtained
from similar strategies using either reference or assembly (B).

The correlation matrix of genome results (A) formed two groups of higher synteny:
❖ Bowtie2/Trimmomatic with HISAT2/skewer
❖ Star/skewer with stampy/Trimmomatic and GSNAP/skewer

Here, the selection of trimming software had a significant effect on count profiles.
Regarding kmer correction, only HISAT2 and bowtie2 show visible difference.

Results comparing count profiles using the reference or assemblies
vary largely by species. In general, correlation is higher on:

❖ VA with 2s+sk or 4s+tr
❖ VC with 4s+sk

The high synteny shown between mapping to some assemblies with
mapping to the reference suggest that the use of both methods
may lead to similar biological insight after data analysis.

A good workflow design can lead to more significant results and increase the likelihood of discovering all genes
involved in the process being studied. As shown, RNA-Seq analysis is a multi-step pipeline and the availability of
several software packages create a need to understand their impact on results. Finally, the design of the analysis
pipeline will also depend on available resources and custom goals:

• Is there a reference genome that can be used? And how close is it to the species of study?
• Using a reference genome provides a common set of gene models for the study, helpful to share and compare results with 

other researchers or compare results from different species

• What metrics are useful for comparing across software workflows?
• e.g. a target statistic to improve could be the final number of reads or transcripts utilized for differential gene expression

• Is there interest in knowing specific transcript isoforms?
• de novo assemblies are useful to discover specific genes and isoforms in the data

Introduction
Transcriptome analysis through RNA-Seq data is a well established tool in model organisms, but the data analysis when examining agricultural plants can be less straightforward. For example, in working 
with blueberries, we have more than one species of interest, fewer genomic resources than many model plant systems, and various levels of polyploidy. When developing a workflow of software tools to 

analyze this data, a researcher faces decisions among numerous algorithms at each step. Here, we have explored some of the current options available to analyze RNA-Seq data in two situations: first, 
when the closest reference genome is from a different species and second, when a polyploid species is being sequenced but the closest reference genome is a diploid progenitor species.

(A) Ferric chelate reductase (FCR) 
activity was used as an indicator 
of stress in roots. (B) Roots were 
collected when activity was 
significantly different. [3]
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Comparing transcripts mapping or not to the reference (E,
green and blue), cds were predicted on a much larger
proportion to those not mapping, although they showed
little homology to known proteins, in contrast to those
mapping, from which ~50% had blast hits.
Transcripts not mapping may be specific to each species;
the tetraploid is enriched compared to the diploid. Those
with cds but no homologs likely represent genes not yet
characterized. Transcripts without a cds may be due to
misassemblies or non-coding RNAs.
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(D) A custom Jaccard score was calculated 
based on the number of transcripts with 
the same BUSCO annotation within a 
cluster divided by the total number of 
transcripts with that BUSCO annotation. 
Thus, higher values indicate a larger 
proportion of annotated transcripts 
being clustered together.

A. VA and VC vs reference genome B. VA and VC vs de novo assemblies C. 3 species vs reference genome

Transcript abundance and transrate score on Trinity 
assemblies and subsets. Columns from left to right: raw 
assemblies, cd-hit representative sequences, cds on cd-hit 
set, RapClust representative sequences, cds after RapClust.
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D. Biological Jaccard score
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Combined distribution of clusters mapping to the reference genome - to 
unique or multiple sites, with translocations or not mapping (out) - and 
transcripts containing either a cds, or these having blast matches.

RNA-Seq data was 100 bp
paired-end reads from 
Illumina HiSeq sequencer

(A, B) Mapping profiles of reads from VA and VC to the diploid V. corymbosum reference [1] and to the transcriptomes generated by de novo assembly and clustering with CD-
HIT. Values are total mapping reads (map), with high quality (hq) or total counts  relative to the total amount of raw reads before trimming. On the genome, parameters 
modified mismatch rate tolerance to default (def) or increased (0.1). On assemblies, mapping to 2s and 4s assemblies was compared. (C) Count profiles adding the hexaploid
rabbiteye blueberry (V. virgatum) mapping to the genome; corrected reads and default parameters. Rabbiteye reads are 2 x 75 bp from three tissues. 

(A) Pearson correlation  was calculate d on pairs of gene count profiles after mapping to the genome with 
default parameters. Upper and lower triangles show row-column method comparisons in either VA or VC. 

(B) de novo assemblies were aligned to the reference genome (Fig 3E) and counts from 
unique mapping transcripts spanning a single gene added to their covered gene model. These 
count profiles were compared to those obtained mapping to the reference with the same 
read type (columns, see box in 2). Mean +- sd from 8 blueberry plants per species is shown.
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B. Distribution of cluster sizes
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