Introduction

Alternate bearing (AB), a biennial fluctuation of crop yield, is a major hindrance for the pecan industry. Fluctuation in yields is often associated with variation in nut quality, in which higher croploads are likely to result in smaller, lower-valued nuts and vice versa. Inconsistencies in yields from year to year tend to be synchronized not only from tree to tree within an orchard, but between orchards, and even across the entire US pecan growing belt. Synchronized AB impedes the pecan industry by disrupting growers' budgets, creating unbalanced supply and demand levels for labor and equipment, and influencing product pricing and availability.

Pecan flowers are imperfect with staminate (male) "catkins" consisting of long inflorescences forming in clusters of three on previous season lateral buds (Fig. 1). The pistillate (female) flowers, lacking petals and sepals, are borne on spikes at the terminal end of current season shoot growth (Fig. 1). Identification of the location and timing of molecular floral initiation signals within pecan tissues is key to the understanding of AB and eventual mitigation of AB in pecan. In research on the model plant Arabidopsis thaliana, major advancements have led to isolation and characterization of over 180 genes involved in flowering.

Exogenous applications of plant growth regulators (PGRs) can potentially be used as tools for modification of flowering behavior and mitigation of alternate bearing in pecan, as well as in other species such as apple and citrus. However, connections between effects of PGR applications and expression levels of genes likely to be involved with flowering have not been previously examined in pecan. The objective of this study was to identify differences in expression of pecan homologs of the flowering genes LFY (*CpLFY*), *AP1* (*CpAP1*), and *FT* (*CpFT*) in leaf and bud tissues selected from fruiting and non-fruiting shoots on 'Western' pecan trees over time and after exogenous applications of various PGRs.

Figure 1. Pecan floral structures. Staminate inflorescences (catkins) hanging in long spikes clustered in three and borne from lateral buds on previous season shoot (left). Cluster of four pistillate flowers borne on terminal end of a current season (new) shoot (right).

Materials and Methods

Experimental Location and Design

- 45-year-old commercially managed, flood-irrigated pecan orchard in Mesilla Valley,
- New Mexico, United States (Fig. 2)
- Six Western cultivar pecan trees were selected for this study from a single irrigation plot. • Randomized complete block design

Exogenous Application of Plant Growth Regulator Treatments

- Plant growth regulators (PGRs) were applied 3 times per season, at approximately 3-, 6-, and 9- weeks after full bloom, to current season individual shoots in two growing seasons: 2014 and 2015 (Fig. 3)
- Return bloom data was collected from the treated shoots in springs of 2015 and 2016. • Treatments (each with an added surfactant)
 - In 2014, 3 treatments were applied to both fruiting and non-fruiting shoot populations: 1) Control
 - 2) Ethephon (as Ethepon2[®] [100 mg·L⁻¹ a.i.])
 - 3) Gibberellic acid (GA₃ as ProGibb[®] [50 mg·L⁻¹ a.i.])
 - In 2015 two additional treatments were:
 - 4) 2X gibberellic acid (as $ProGibb^{\mathbb{R}}$ [100 mg·L⁻¹ a.i.])
 - 5) Aminoethoxyvinylglycine (AVG; as ReTain[®] [88 mg·L⁻¹ a.i.])

Tissue Sampling

- Approximately 1 week post application of PGRs a whole leaf and the associated bud were sampled from 1 nonfruiting shoot and 1 fruiting shoot per treatment group in each tree
- Total of 3 sample dates and 108 total shoots sampled from this site in 2014 and 180 shoots sampled in 2015. The samples were maintained at -80°C until further processing

Gene Expression Analyses of Tissues

- Leaf and bud tissues were homogenized separately and approximately 100 mg of ground tissue was utilized for RNA isolation with Purelink® Plant RNA Reagent (Invitrogen, Carlsbad, CA)
- RNA from each sample was treated with DNase to remove any contaminant DNA (Fig. 4) • DNase-treated RNA was quantified using a NanoDrop 1000 spectrophotometer
- Complementary DNA (cDNA) synthesized using a SuperScript® IV Reverse Transcriptase kit (Invitrogen,
- Carlsbad, CA) • Gene specific primers were designed for LFY and actin using nucleotide alignments of hickory, walnut, apple, and poplar with Geneious v 5.5.7
- The pecan homologs *CpAP1* and *CpFT* were identified using the pecan draft genome
- 87 MX 3.11 (Jenkins, 2013) using Geneious 9.1 software (Kearse et al., 2012) (Table 1) • Primer probes assays were synthesized by Integrated DNA Technologies (Coralville, IA) each with a unique fluorescent reporter dye and a quencher (Table 2)
- Assays for each sample were performed in triplicate using iQTM Multiplex Powermix (Bio-Rad) • The CFX96 touch real-time detection system (BioRad, Hercules, CA) was utilized and the qRT-PCR program
- was 95°C for 2.5 min, followed by 39 cycles of 95°C for 15 s, and 60°C for 60 s • Each qRT-PCR result was regarded as positive for any cycle threshold value less than 35.0 • Starting quantities (SQ) were calculated by BioRad software using the CFX Touch Real-Time PCR Detection
- System • For each sample, the average target gene SQ from three technical replicates performed within each plate were normalized to the reference gene SQ (*CpACTIN*). Therefore, normalized gene expression was calculated as the ratio of average target gene SQ to average reference gene SQ

Data Analysis

- Gene expression variables were analyzed using a mixed model with fixed effects for treatment, fruiting status, date and all interactions among these three factors
- The model incorporated random effects corresponding to the blocking factor, tree, and tree x date • Fisher's least significant difference (LSD) was used for *post hoc* pair-wise comparisons applied to assess simple effects corresponding to the highest order significant effect
- Analyses were executed using SAS version 9.4 software (copyright © 2012 SAS Institute Inc., Cary, NC, USA)
- Significance, $\alpha = 0.05$ for all analyses. Differences were acknowledged as "marginally significant" when $\alpha = 0.05$ 0.10
- For all analyses the outlier strategy was employed with outliers defined as data points producing studentized residuals with magnitudes greater than three

Marisa Y. Thompson^{1,2}, Jennifer Kandall², Richard J. Heerema¹, Dawn VanLeeuwen⁴ ¹Department of Extension Plant Sciences, ²Corresponding author: risi@nmsu.edu, ³ Department of Entomology, Plant Pathology, and Weed Science, ⁴Department of Economics, Applied Statistics, and International Business

Figure 5. Seasonal expression profiles of 2014 *CpLFY* and *CpAP1* in control group only. Seasonal expression profiles of CpLFY (A, B) and CpAP1 (C, D) in leaves (A, C) and buds (B, D) from control group fruiting (on) and non-fruiting (off) pecan shoots in 2014 are shown. Data are lsmeans \pm_{SE} of six independent replicates (n = 6 trees) and three technical replicates. A significant difference between the normalized expression in tissues from fruiting and non-fruiting shoots at the same time point is denoted with lowercase letters when $P \le 0.05$.

Figure 7. *CpAP1* gene expression in 2015 bud tissues by treatment and date.

Figure 2. Selecting shoots in mature pecan tree canopy.

Figure 3. Spray application of plant growth regulator on non-fruiting pecan shoot.

Figure 4. Centrifugation step

during isolation of RNA.

	Target Gene	Assay Form	Sequence				
		Probe	5'-/5HEX/TGGAAGA	GA/ZEN/ACTTCT	GGGCAACGG/3IAB	kFQ/-3'	
	CpACTIN CpLFY	Primer 1	5'-TTGTATGTGGTCTCGTGGATTC-3'				
		Primer 2	5'-ATCACAATTGGAGCTGAGAGG-3'				
		Probe	5'-/56-FAM/AGCAGTGCC/ZEN/GTGATTTCTTGATCCA/3IABkFQ/-3				
		Primer 1	5'-CGCTCCTTCGCTATGTTCTG-3'				
		Primer 2	5'-CGATTACCTCTTCCATCTCTACG-3'				
		Probe	5'-/5TEX615/TGCGCTTTCTTCAGCAAACCAGAC/3IAbRQSp/-3'				
	CpAP1	Primer 1	5'-AGAGGATCGAG	AACAAGATCAA-3	3'		
		Primer 2	5'-GCATCACAAAGO	CACAGAGAT-3'			
		Probe	5'-/5Cy5/AGCTCAAG	GCCGTCTCATGT	TGTCA/3IAbRQSp/-	3'	
	CpFT	Primer 1	5'-CTCTGAGGGTCACTTACAACAA-3'				
		Primer 2	5'-GTCATCACCGC	CTACATCAA-3'			
	Table 7 Traits of probe fluorophores						
Table 2. Mails of probe indorophores.							
		Target Gen	ie Fluoropnore (Dye)	Excitation (nm)	Detection (nm)		
		CpACTIN	HEXIM	515-535	560-580		
		CpLFY	6-FAM TM	450-490	515-530		
		CpAP1	Texas Red™	560-590	610-650		
		CpFT	Cy [®] 5	620-650	675-690		
Gene Express• In the c in 2014• In the c were of• $CpAP1$ from un 	<i>ion in Untre</i> control treatre and 2015, r control samp ily detected expression for reated show g status effect levels appea <i>ion Respons</i> was more h ression of <i>Cp</i> of fruiting states oud tissues, <i>Cp</i> of a two-way sion levels we sion in both of ent as well as 5 date main end d 23 July. 5 a significant at higher rans ion rates that 5 bud <i>CpAPT</i> was and here.	ated Contr nent bud m respectively les, signific on 13 June in non-fruit ots on 13 June in non-fruit ots on 13 June in the other <i>e to Tissue</i> ighly expre- oLFY at all. atus, sampl <i>CpLFY</i> exprised interaction rith no differ of the GA3 is a decrease effect was s a decrease effect was s	<i>col Samples</i> neans for normalized y. cant differences in 2014 in leaf tissue ting shoots was sig une 2014, (Fig. 5C 21 was not detected reasing into late Ju <i>Type, Fruiting Sta</i> essed in bud tissue . <i>CpLFY</i> expression ing date, or PGR t ression differed sign of treatment by d erences due to trea treatments on 1 Ju e in expression due significant with 10 by date interaction non-fruiting shoot t two dates (Fig. 7) n of treatment by d	ed gene express CpLFY express es (Fig 5A) and gnificantly higher b). d in bud tissues, uly (Fig. 5D). tatus, Sampling than in leaves where the second than in leaves where the second gnificantly by sate late (P=0.0008) tment found on uly, and on 23 June to the ProGibber June CpAP1 ext was detected we s and again with b). date interaction 93% and 95% of page 2000	ion were $0.233 \pm$ sion between fruit bud tissues (Fig. er than in fruiting however a date e <u>Date, and Plant</u> with 97.63% of le sues displayed no er year. ampling date in b- was found in 201 10 June, a reduct uly an increase in 0100 GA ₃ treatme apression values h ith buds from frui- n the latest date, 2 was also signification of the bud sample	0.0210 a ing and 5B). shoots i ffect is a <u>Growth</u> af samp signific oth year 5 in buc ion of bu express nt (Fig. nigher th iting shc 3 July, F ant. es, this v	
Conclus • With the tissues. • We dete (<i>CpLF</i>) • Differe and we • Regula endoge • PGR tra- express • We pro	Sions the genes that ected signif <i>Y</i> , <i>CpAP1</i> , at nces based propose th tory networ nous, and at eatments aff sion. pose a mult	t we evalution icant different different <i>CpFT</i> , on PGR transformer of the set of the se	uated, buds are a erences in expres) based on shoot reatment in the fl owering homolog vering plants that is signals are known urn bloom, thus,	far better pred sion of each o fruiting status lowering homo gs have a role control floral own to be com the change in	lictor of return b f the 3 selected at specific time ologs <i>CpLFY</i> an in pistillate flov initiation in res plex, and pecan return bloom m	oloom in flowerin points. d <i>CpAP</i> ver initi ponse to is no en ay be co	
G	rowing Sea	ason 1	Do	rmancy	Grov	wing Se	
New Flowering or	t wering	Signal Light Tempera Phytohorn Carbohyd Gene Expi Individua on Expa Sho Each bud is <i>p</i> flowering s subsequent	s: t ture nones lrates ression of ot ot ot ot ot ot ot season E Bud F F Bud F F Bud F F F F F F F F F F F F F F F F F F F	Clowering Repressor Genes	Signals: Light Temperature Phytohormones Carbohydrates Gene Expression Spring Budbrea	K	

Figure 8. Schematic of proposed process for floral initiation in pecan. In this proposed schematic of the process, floral initiation begins early in the growing season of year one with genetic switches that respond to both environmental (light and temperature) and endogenous signals (including phytohormone production and carbohydrate status), which start a cascade of activity and, eventually, up-regulation of flowering gene repressors (likely *FLOWERING LOCUS C*) before and during winter dormancy. Upon spring emergence from dormancy, as budbreak begins, the second phase of the flowering decision process includes those same environmental and endogenous signals which play a role in gene activity (including turning off of flowering gene repressors).

Acknowledgements

Funding provided through USDA Specialty Crop Block Grant. Thanks to Dixie Ranch for allowing these studies to be performed in their commercial orchards. Also thanks to Christian Barraza, Kim Cervantes, James Kilcrease, Jacob Lilley, Dave Lowry, Jordan Martin, Esteban Morales, Tesneem Nusayr, Adriana Rascon, Hormat Rhein, Cody Runyan, Josh Sherman, Rio Stamler for their help in the field and laboratory.

sequences shown.

210 and 0.113 ± 0.0132

and non-fruiting shoots ots in the leaf tissues

t is apparent in which

wth Regulator

mples in 2015 showing ificant differences based

ears. bud tissue *CpLFY* of bud *CpLFY* ression in the ReTain Fig. 6). r than those on both 1

shoots expressing ly, having higher

nis variable is not

m in pecan than leaf

vering gene homologs nts.

pAP1 were detected initiation. se to environmental

no exception. be correlated to gene

tion in pecan (Fig. 8).

