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Nitrogen Management Framework » Fig.7. Results from the experiment suggest that the action threshold for fertilizer decision making for a
napa cabbage crop is 26 mg N kg of soil when used two weeks after transplanting into the field.

» Fig. 2. Head cabbage above ground biomass and dry biomass nitrogen as a function of the fraction of
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2) Compare SNQT procedure to the standard procedure for soil NO;-N determination in

a range of Hawaiian soils and NO;-N concentrations.
» Linear regression conducted in SigmaPlot 10.0

Figure 5. Figure 6.

Table 2. List of soils used for accuracy assessment of the SNQT method 300 40 Refe re n c e S

Island Farm (Site) N mgt. Practice Soil Series Soil Classification Textural Class ) . z

Oahu Helemano Conventional Wahiawa Very-fine, kaolinitic, isohyperthermic Rhodic Haplustox Silty clay R"=0.9699 e ~o R® = 0.8654 © z 2

Oahu Wahiawa Organic Wahiawa Very-fine, kaolinitic, isohyperthermic Rhodic Haplustox Silty clay = 250 A y =-1.0385+0.9308*x = y =-0.2112+0.9866*x © _ z Z

Oahu Wahiawa Hybrid Wahiawa Very-fine, kaolinitic, isohyperthermic Rhodic Haplustox Silty clay g 8 _ z

Oahu Waimanalo Conventional Waialua Very-fine, mixed, superactive, isohyperthermic Pachic Haplustolls Silty clay @ D 30 A1 Z . . . .. . .

Oahu Waimanalo Organic Waialua Very-fine, mixed, superactive, isohyperthermic Pachic Haplustolls Silty clay = 200 - o = z 7 Cate, R. B . a nd L.A. N E|SO n. 197 1 . A Sl m ple StatIStlca I p rOCGd u re fO I pa rtItIOn | ng SO' I tESt

Oahu Waimanalo Native Waialua Very-fine, mixed, superactive, isohyperthermic Pachic Haplustolls Silty clay 9 g" _@ g’ o -~ z~ 0o . . . .

Maui Makawao Hybrid Keahua Fine, kaolinitic, isohyperthermic Ustic Haplocambids Silty clay g § g § y Z o corre | atIO NI ntO tWO Cla SSes. SO' I SC' . SOC. Am er. PFOC. 35 . 658_660.

Maui Makawao Native Keahua Fine, kaolinitic, isohyperthermic Ustic Haplocambids Silty clay Z 8 150 - Z 8 20 - 0o z 0]

Maui Kula Conventional  Keahua Fine, kaolinitic, isohyperthermic Ustic Haplocambids Silty clay - 3 " 55 P 70

Maui Kula Organic Kamaole Clayey fragmental, mixed, semiactive, isothermic Aridic Haplustolls Stony silty loam @) ) ©) e 0 Z o© . . . . . .
Hawaii Kamuela Conventional Waimea Medial, amorphic, isothermic Humic Haplustands Very fine sandy loam (E_D _g 100 4 % _CéS o o/ O(b HartZ, T.K., W-E. Bendlxen, and I_. Wlerdsma. 2000. The Value Of DFESIdEd ress SOlI nltrate tEStIng
Hawaii Lalamilo Organic Waimea Medial, amorphic, isothermic Humic Haplustands Very fine sandy loam c ¢] . . . . . .

Hawaii Kamuela Native Waimea Medial, amorphic, isothermic Humic Haplustands Very fine sandy loam @ % @ &)*5 10 ~ o 890, dS ad nltrOgen management tOOI IN IrrlgatEd VegEtab|e pI’Od UCtIOn. HOFtSCIenCE 35:65 1_ 656.
Hawaii Kamuela Conventional Maile Hydrous, ferrihydritic, isothermic Acrudoxic Hydrudands Silt loam d>J\ 50 | ° 5‘ P /8 @ ©

Hawaii Kamuela Native Maile Hydrous, ferrihydritic, isothermic Acrudoxic Hydrudands Silt loam —— 11line e o = 11line

Hawaii Kamuela Organic Paauhau Medial hydrous, amorphic, isohyperthermic Dystric Haplustands Silty clay loam L ' . . : : : :

: | | . nydrous, amer hermie Dveir —— Regression line Regression line Soil Survey Staff, Natural Resources Conservation Service, United States Department of

ahu  Wainae  Conventional Lualualei Fine, smectitic, isohyperthermic Typic Gypsitorrerts Clay o 1o | | | . . 0 | | .

ool e Creene evee e o orthomi T Gt o | L 0 50 100 150 200 250 300 0 10 20 30 40 Agriculture. Web Soil Survey. Available online at https://websoilsurvey.sc.egov.usda.gov/.
Soils collected for a separate long-term aerobic incubation study on mineralization potential, was used to assess the accuracy of the SNQT Soil N03-N (mg kg’l) Soil NO3-N (mg kg'l) Accessed [ m O nt h/d ay/yea r] i

procedure in a range of soil types found throughout the Hawaiian islands By Soil Nitrate Quick Test By Soil Nitrate Quick Test

Conduct a N rate experiment to determine SNQT threshold for napa cabbage. Stanford, George. "Rationale for optimum nitrogen fertilization in corn production." Journal of

Measure soil NO,-N weekly throughout the growing period. » The SNQT is well-correlated to the standard laboratory method across a wide range of soil types and

Measure biomass at harvest. soil NO5-N concentrations (Fig. 5).
Determine SNQT action threshold at week 2 using Cate-Nelson analysis (Cate and Nelson, 1971). » Focusing on the diagnostic range of the SNQT most critical to decision making (0-30 mg N kg), the
SNQT regression line shows an better alignment to the 1:1 line but results in a lower regression

coefficient (Fig. 6).
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